access icon free Celestial navigation in deep space exploration using spherical simplex unscented particle filter

Deep space exploration has significant meaning both in science and economy; however, it is very hard to obtain the relevant information due to its complexity. In this study, the autonomous celestial navigation method is utilised. To achieve high accuracy of the celestial navigation in a deep space environment, the improved filtering algorithm–spherical simplex unscented particle filter (SSUPF) is implemented, which adopts the spherical simplex unscented Kalman filter (SSUKF) algorithm to generate the important sampling density of particle filter (PF). According to simulation results, the authors derive that the SSUPF method can greatly increase the performance of the navigation system compared with unscented Kalman filter (UKF), SSUKF and unscented PF (UPF), and the computational burden of SSUPF is reduced by 24% in comparison with UPF.

Inspec keywords: particle filtering (numerical methods); aerospace navigation

Other keywords: SSUPF algorithm; deep space exploration environment; SSUKF algorithm; spherical simplex unscented Kalman filter algorithm; improved filtering algorithm; autonomous celestial navigation method; spherical simplex unscented particle filter

Subjects: Air traffic control and navigation; Human space exploration and engineering

References

    1. 1)
      • 22. Julier, S.J.: ‘The spherical simplex unscented transformation’. Proc. American Control Conf., Denver, CO, USA, November 2003, vol. 3, pp. 24302434.
    2. 2)
      • 10. He, W., Ge, S.S., Li, Y.N., et al: ‘Neural network control of a rehabilitation robot by state and output feedback’, J. Intell. Robot. Syst., 2015, 80, (1), pp. 1531.
    3. 3)
      • 6. Kim, H.S., Hong, J.H., Park, W.S., et al: ‘Satellite celestial navigation using star-tracker and earth sensor’. Proc. 15th Int. Conf. on Control, Automation and Systems (ICCAS), Busan, South Korea, December 2015, pp. 461465.
    4. 4)
      • 13. Khanesar, M.A., Kayacan, E., Teshnehlab, M., et al: ‘Extended kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation’, IEEE Trans. Ind. Electron., 2012, 59, (11), pp. 44434455.
    5. 5)
      • 25. Xu, W.M., Cui, H.T., Cui, P.Y., et al: ‘Selection and planning of asteroids for deep space autonomous optical navigation’, Acta Aeronaut. Astronaut. Sin., 2007, 28, (4), pp. 891896.
    6. 6)
      • 21. Shen, H.J., Karlgaard, C.D.: ‘Sensitivity reduction of unscented Kalman filter about parameter uncertainties’, IET Radar Sonar Navig., 2015, 9, (4), pp. 374383.
    7. 7)
      • 9. Chen, S.Y.: ‘Kalman filter for robot vision: a survey’, IEEE Trans. Ind. Electron., 2012, 59, (11), pp. 44094420.
    8. 8)
      • 12. Shi, J., Li, Y.Y., Qi, G.Q., et al: ‘Extended target tracking filter with intermittent observations’, IET Signal Process., 2016, 10, (6), pp. 592602.
    9. 9)
      • 15. Ning, X.L., Wang, F., Fang, J.C.: ‘Implicit UKF and its observability analysis of satellite stellar refraction navigation system’, Aerosp. Sci. Technol., 2016, 54, pp. 4958.
    10. 10)
      • 11. He, W., Ge, S.S.: ‘Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 4858.
    11. 11)
      • 2. Wang, M., Cheng, Y.F., Yang, B., et al: ‘On-orbit calibration approach for optical navigation camera in deep space exploration’, Opt. Express, 2016, 24, (5), pp. 55365554.
    12. 12)
      • 23. Wei, E.H., Jin, S.G., Zhang, Q., et al: ‘Autonomous navigation of Mars probe using X-ray pulsars: modeling and results’, Adv. Space Res., 2013, 51, (5), pp. 849857.
    13. 13)
      • 8. Ning, X.L., Ma, X., Peng, C., et al: ‘Analysis of filtering methods for satellite autonomous orbit determination using celestial and geomagnetic measurement’, Math. Probl. Eng., 2012, 2012, (1024-123X), pp. 95100.
    14. 14)
      • 14. Xing, Z.R., Xia, Y.Q.: ‘Comparison of centralised scaled unscented kalman filter and extended Kalman filter for multisensor data fusion architectures’, IET Signal Process., 2016, 10, (4), pp. 359365.
    15. 15)
      • 5. Chang, L.B., Hu, B.Q., Li, A., et al: ‘Strapdown inertial navigation system alignment based on marginalised unscented Kalman filter’, IET Sci. Meas. Technol., 2013, 7, (2), pp. 128138.
    16. 16)
      • 19. Caro, E., Valverde, G.: ‘Impact of transformer correlations in state estimation using the unscented transformation’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 368376.
    17. 17)
      • 24. Ning, X.L., Huang, P.P., Fang, J.C., et al: ‘An adaptive filter method for spacecraft using gravity assist’, Acta Astronaut., 2015, 109, pp. 103111.
    18. 18)
      • 3. Ma, X., Fang, J.C., Ning, X.L., et al: ‘Autonomous celestial navigation for a deep space probe approaching a target planet based on ephemeris correction’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2015, 229, (14), pp. 26812699.
    19. 19)
      • 4. Fang, J.C., Ning, X.L.: ‘Autonomous celestial navigation method for deep space detector’ (Northwestern Polytechnical University Press, Shanxi, 2010, 1st edn.).
    20. 20)
      • 17. Mohammadi, A., Asif, A.: ‘Distributed consensus + innovation particle filtering for bearing/range tracking with communication constraints’, IEEE Trans. Signal Process., 2015, 63, (3), pp. 620635.
    21. 21)
      • 1. Li, P., Cui, H.T., Cui, P.Y.: ‘UPF based autonomous navigation scheme for deep space probe’, J. Syst. Eng. Electron., 2008, 19, (3), pp. 529536.
    22. 22)
      • 20. Vargas, A.N., Menegaz, H.M.T., Ishihara, J.Y., et al: ‘Unscented Kalman filters for estimating the position of an automotive electronic throttle valve’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 46274632.
    23. 23)
      • 7. Ning, X.L., Liu, L.L.: ‘A two-mode INS/CNS navigation method for lunar rovers’, IEEE Trans. Instrum. Meas., 2014, 63, (9), pp. 21702179.
    24. 24)
      • 18. Pan, Y., He, K.K., Ye, H.: ‘A new spherical simplex unscented Kalman filter-based jumping and static interacting multiple model’. Proc. 12th Int. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, January 2015, pp. 18291833.
    25. 25)
      • 16. Yoo, J., Kim, W., Kim, H.J.: ‘Distributed estimation using online semi-supervised particle filter for mobile sensor networks’, IET Control Theory Appl., 2015, 9, (3), pp. 418427.
    26. 26)
      • 26. Wu, W.R., Ma, X., Ning, X.L.: ‘Autonomous navigation method with high accuracy for cruise phase of Mars probe’, Sci. Sin., 2012, 42, (8), pp. 936948.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0184
Loading

Related content

content/journals/10.1049/iet-spr.2017.0184
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading