http://iet.metastore.ingenta.com
1887

Hard component detection of transient noise and its removal using empirical mode decomposition and wavelet-based predictive filter

Hard component detection of transient noise and its removal using empirical mode decomposition and wavelet-based predictive filter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a novel method that provides weapon sound (WS) interference reduction of military instruction sound or instructions sound (IS). This method comprises of the following steps. In the first step, the mixed signal is split into its basic constituents using principal component analysis. The second step provides the intrinsic mode functions using the empirical mode decomposition method. In the third step, the fundamental frequency component is extracted by cepstrum analysis. The localisation of WS is done using the grid search window-dominant signal subspace-based method in the fourth step. Multiscale prediction and filtering using Daubechies wavelet-based prediction are applied in the final step. The proposed method provides better results than existing baseline methods, for various signal-to-noise ratios. The simulations have also been performed on recorded WS corrupted IS signals from three different distances for the various input signal-to-weapon noise ratios, to verify the accuracy of the proposed method.

References

    1. 1)
      • 1. Maher, R.C.: ‘Acoustical characterization of gunshots’ (SAFE, Washington, D.C., USA, 2007).
    2. 2)
      • 2. Rasmussen, P., Flamme, G., Stewart, M., et al: ‘Measuring recreational firearm noise’, Sound Vib., 2009, 43, pp. 1418.
    3. 3)
      • 3. Bronuzzi, F., Monai, L., Patruccco, M.: ‘Correct and effective characterization of fire-arms noise: a basic aspect to provide reliable input data for the reduction of emitted noise from shooting ranges in urbanized area’, Chem. Eng. Trans., 2012, 26, pp. 507512.
    4. 4)
      • 4. Ylikoski, M., Pekkarinen, J.O., Starck, J.P., et al: ‘Physical characteristics of gunfire impulse noise and its attenuation by hearing protectors’, Scand. Audiol., 1995, 24, (1), pp. 311.
    5. 5)
      • 5. Talmon, R., Cohen, I., Gannot, S., et al: ‘Supervised graph-based processing for sequential transient interference suppression’, IEEE Trans. Audio Speech Lang. Process., 2012, 20, (9), pp. 25282538.
    6. 6)
      • 6. Talmon, R., Cohen, I., Gannot, S.: ‘Single-channel transient interference suppression with diffusion maps’, IEEE Trans. Audio Speech Lang. Process., 2013, 21, (1), pp. 132144.
    7. 7)
      • 7. Chatlani, N., Soraghan, J.J.: ‘EMD-based filtering (EMDF) of low-frequency noise for speech enhancement’, IEEE Trans. Audio Speech Lang. Process., 2012, 20, (4), pp. 11581166.
    8. 8)
      • 8. Tavares, R., Coelho, R.: ‘Speech enhancement with nonstationary acoustic noise detection in time domain’, IEEE Signal Process. Lett., 2016, 23, (1), pp. 610.
    9. 9)
      • 9. Krawczyk-Becker, M., Gerkmann, T.: ‘Fundamental frequency informed speech enhancement in a flexible statistical framework’, IEEE/ACM Trans. Audio Speech, Lang. Process., 2016, 24, (5), pp. 940951.
    10. 10)
      • 10. Ming, J., Crookes, D.: ‘Speech enhancement based on full-sentence correlation and clean speech recognition’, IEEE/ACM Trans. Audio Speech Lang. Process., 2017, 25, (3), pp. 531543.
    11. 11)
      • 11. Mavaddaty, S., Ahadi, S.M., Seyedin, S.: ‘Modified coherence-based dictionary learning method for speech enhancement’, IET Signal Process., 2015, 9, (7), pp. 537545.
    12. 12)
      • 12. Samui, S., Chakrabarti, I., Ghosh, S.K.: ‘Improved single channel phase-aware speech enhancement technique for low signal-to-noise ratio signal’, IET Signal Process., 2016, 10, (6), pp. 641650.
    13. 13)
      • 13. Li, Y., Kang, S.: ‘Deep neural network-based linear predictive parameter estimations for speech enhancement’, IET Signal Process., 2017, 11, (4), pp. 469476.
    14. 14)
      • 14. Yang, F., Wu, M., Yang, J.: ‘Stereophonic acoustic echo suppression based on Wiener filter in the short-time Fourier transform domain’, IEEE Signal Process. Lett., 2012, 19, (4), pp. 227230.
    15. 15)
      • 15. Abramson, A., Cohen, I.: ‘Simultaneous detection and estimation approach for speech enhancement’, IEEE Trans. Audio, Speech, and Lang. Process., 2007, 15, (8), pp. 23482359.
    16. 16)
      • 16. Saikia, B.J., Baruah, U.: ‘A GA-NN based wavelet method of speech signal denoising’. Int. Conf. Computing Communication and Information (ICCCI), Coimbatore, India, 2015, pp. 19.
    17. 17)
      • 17. Barsanti, R.J., Fargues, M.P.: ‘Wavelet-based denoising of acoustic transients’, Signals, Systems and Computers, 1996, IEEE, Conference Record of the Thirtieth Asilomar, Pacific Grove, CA, USA, 1997, pp. 848852.
    18. 18)
      • 18. Mondal, A., Banerjee, P., Somkuwar, A.: ‘Enhancement of lung sounds based on empirical mode decomposition and Fourier transform algorithm’, Comput. Methods Progr. Biomed., 2017, 139, pp. 119136.
    19. 19)
      • 19. Lee, S., Lee, G.: ‘Noise estimation and suppression using a nonlinear function with a priori speech, absence probability in speech enhancement’, Hindawi Publ. Corp., J. Sens., 2016, 2016, p. 7. Available at http://dx.doi.org/10.1155/2016/5352437, Article ID 5352437, accessed 5 December 2016.
    20. 20)
      • 20. Zoghlami, N., Lachiri, Z.: ‘Application of perceptual filtering models to noisy speech signals enhancement’, Hindawi Publ. Corp., J. Electr. Comput. Eng., 2012, 2012, p. 12, doi: 10.1155/2012/282019, Article ID 282019.
    21. 21)
      • 21. Yoon, B.S., Kim, J.W., Lee, W.M., et al: ‘Fixed point implementation of the QCELP speech coder’, ETRI J., 1997, 19, (3), pp. 242258. Available at http://dx.doi.org/10.4218/etrij.97.0197.0309, accessed 5 December 2016.
    22. 22)
      • 22. Byun, K.J., Jeong, S., Kim, H.R., et al: ‘Noise whitening-based pitch detection for speech highly corrupted by colored noise’, ETRI J., 2003, 25, (1), pp. 4951.
    23. 23)
      • 23. Han, S., Jeong, S., Hahn, M.: ‘Optimum MVF estimation-based two-band excitation for HMM-based speech synthesis’, ETRI J., 2009, 31, (4), pp. 457459.
    24. 24)
      • 24. Lee, S.J., Kang, B.O., Jung, H.Y., et al: ‘Statistical model-based noise reduction approach for car interior applications to speech recognition’, ETRI J., 2010, 32, (5), pp. 801809.
    25. 25)
      • 25. Huang, J., Zhang, X., Zhang, Y., et al: ‘Speech denoising via low-rank and sparse matrix decomposition’, ETRI J., 2014, 36, (1), pp. 167170. Available at http://dx.doi.org/10.4218/etrij.14.0213.0033, accessed 5 December 2016.
    26. 26)
      • 26. Lee, Y.K., Park, J.G., Lee, Y.K., et al: ‘Speech enhancement using phase-dependent a priori SNR estimator in log–mel spectral domain’, ETRI J., 2014, 36, (5), pp. 721729. Available at http://dx.doi.org/10.4218/etrij.14.2214.0039, accessed 5 December 2016.
    27. 27)
      • 27. Smith, L.I.: ‘A tutorial on principal components analysis’, Computer Science Technical Report No. OUCS-2002-12, 26, 2002.
    28. 28)
      • 28. Flandrin, P., Rilling, G., Goncalves, P.: ‘Empirical mode decomposition as a filter bank’, IEEE Signal Process. Lett., 2004, 11, (2), pp. 112114.
    29. 29)
      • 29. Ying, D., Zhou, R., Li, J., et al: ‘Window-dominant signal subspace methods for multiple short-term speech source localization’, IEEE/ACM Trans. Audio Speech Lang. Process., 2016, 25, pp. 114.
    30. 30)
      • 30. Renaud, O., Starck, J.L., Murtagh, F.: ‘Wavelet-based combined signal filtering and prediction’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2005, 35, (6), pp. 12411251.
    31. 31)
      • 31. The stereo setup definition. Available at http://music.stackexchange.com/questions/24631/what-is-the-difference-between-mono-and-stereo, accessed 5 December 2016.
    32. 32)
      • 32. Kobayashi, T., Imai, S.: ‘Spectral analysis using generalized cepstrum’, IEEE Trans. Acoust. Speech Signal Process., 1984, Assp-32, (6), pp. 12351238.
    33. 33)
      • 33. Book on speech and noise. Available at http://www.who.int/occupational_health/publications/noise.pdf, accessed 5 December 2016.
    34. 34)
      • 34. Barnard, A.R.: ‘Quantifying acoustic sources through sound power measurements’, Sound Vib., 2014.
    35. 35)
      • 35. Petersen, E.C.: ‘An overview of standards for sound power determination’ (Bruel & Kjser, Denmark, 1995).
    36. 36)
      • 36. Astrup, T.: ‘Measurement of sound power using the acoustic intensity method – a consultant's viewpoint’, Appl. Acoust., Elsevier, 1997, 50, (2), pp. 111123.
    37. 37)
      • 37. Albers, A., Behrendt, M., Landes, D.: ‘Got the power – a new method for a quick determination of the sound power using free-form measuring surfaces’. NTER-Noise, Hamburg, Germany, 2016.
    38. 38)
      • 38. Kais, K., Abdel-Ouahab, B., Abdelkhalek, B., et al: ‘Speech enhancement via EMD’, EURASIP J. Adv. Signal Process., 2008, 2008, pp. 18.
    39. 39)
      • 39. Sandsten, M.H., Axmon, J.: ‘Multiple-window cepstrum analysis for estimation of periodicity’, IEEE Trans. Signal Process., 2007, 55, (2), pp. 474481.
    40. 40)
      • 40. Fundamental frequency estimation using complex cepstrum. Available at https://in.mathworks.com/help/signal/ug/estimating-fundamental-frequency-with-the-complex-cepstrum.html, accessed January 2016.
    41. 41)
      • 41. Harvey, A.C.: ‘Forecasting, structural time series models, and the Kalman filter’ (Cambridge University Press, Cambridge, UK, 1990).
    42. 42)
      • 42. The military sound signal. Available at http://opengameart.org/content/sci-fi-rts-war-unit-sounds, accessed 2 February 2015.
    43. 43)
      • 43. Sound signal. Available at https://in.mathworks.com/help/matlab/ref/sound.html, accessed 2 February 2015.
    44. 44)
      • 44. Pabler, S., Fischer, W.-J.: ‘Food intake monitoring: automated chew event detection in chewing sounds’, IEEE J. Biomed. Health Inf., 2014, 18, (1), pp. 278289.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0167
Loading

Related content

content/journals/10.1049/iet-spr.2017.0167
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address