http://iet.metastore.ingenta.com
1887

Design methods for ULA-based directional antenna arrays by shaping the Cramér–Rao bound functions

Design methods for ULA-based directional antenna arrays by shaping the Cramér–Rao bound functions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study focuses on the design methods for uniform linear array (ULA) based directional antenna arrays by optimising the radiation characteristics of elements. To improve the performance of direction-of-arrival (DOA) estimation in a predetermined objective spatial sector which includes all the potential directions of incidence, Cramér–Rao bound based optimisation models are established by utilising the least squares fitting technique. Besides, a modified simulated annealing (SA) algorithm with the iteration of parameters is proposed, aiming to solve the optimisation problems when the classic SA is invalid. Compared with the corresponding conventional ULA, an optimised array can obtain higher accuracy of DOA estimation in the objective spatial sector with little fluctuation. Additionally, the optimised design of radiation characteristics can also suppress the ambiguities, and remains effective for the arrays with different aperture. Simulation results verify the effectiveness of the proposed methods and the superiority of the optimised arrays.

References

    1. 1)
      • 1. Schmidt, R.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, 34, (3), pp. 276280.
    2. 2)
      • 2. Roy, R., Kailath, T.: ‘ESPRIT-estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (7), pp. 984995.
    3. 3)
      • 3. Stoica, P., Sharman, K.C.: ‘Maximum likelihood methods for direction-of-arrival estimation’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (7), pp. 11321143.
    4. 4)
      • 4. Rubsamen, M., Gershman, A.B.: ‘Sparse array design for azimuthal direction-of-arrival estimation’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 59575969.
    5. 5)
      • 5. Pal, P., Vaidyanathan, P.P.: ‘Nested arrays: a novel approach to array processing with enhanced degrees of freedom’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41674181.
    6. 6)
      • 6. Liu, C.L., Vaidyanathan, P.P.: ‘Super nested arrays: linear sparse arrays with reduced mutual coupling – part I: fundamentals’, IEEE Trans. Signal Process., 2016, 64, (15), pp. 39974012.
    7. 7)
      • 7. Qin, S., Zhang, Y.D., Amin, M.G.: ‘Generalized coprime array configurations for direction-of-arrival estimation’, IEEE Trans. Signal Process., 2015, 63, (6), pp. 13771390.
    8. 8)
      • 8. Rahim, T., Davies, D.: ‘Effect of directional elements on the directional response of circular antenna arrays’, IEE Proc. Microw. Opt. Antennas, 1982, 129, (1), pp. 1822.
    9. 9)
      • 9. Biguesh, M., Gazor, S.: ‘On proper antenna pattern for a simple source detection and localization system’, IEEE Trans. Antennas Propag., 2009, 57, (4), pp. 10731080.
    10. 10)
      • 10. Liao, B., Tsui, K.-M., Chan, S.-C.: ‘Frequency invariant uniform concentric circular arrays with directional elements’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp. 871884.
    11. 11)
      • 11. Raimondi, F.E.D., Comon, P.: ‘Tensor DoA estimation with directional elements’, IEEE Signal Process. Lett., 2017, 24, (5), pp. 648652.
    12. 12)
      • 12. Sanudin, R., Noordin, N., El-Rayis, A., et al: ‘Analysis of DOA estimation for directional and isotropic antenna arrays’. Proc. Loughborough Antennas Propagation Conf. (LAPC), November 2011, pp. 14.
    13. 13)
      • 13. Sanudin, R., Noordin, N., El-Rayis, A., et al: ‘Capon-like DOA estimation algorithm for directional antenna arrays’. Proc. Loughborough Antennas Propagation Conf. (LAPC), November 2011, pp. 14.
    14. 14)
      • 14. Pesavento, M., Bohme, J.F.: ‘Direction of arrival estimation in uniform circular arrays composed of directional elements’. Proc. Sensor Array Multichannel Signal Processing Workshop, August 2002, pp. 503507.
    15. 15)
      • 15. Chang, C., Cheng, T., Lin, H.: ‘Fast direction finding algorithm for circular array based on directional antenna’. Proc. Int. Workshop Microwave and Millimeter Wave Circuits and System Technology (MMWCST), April 2012, pp. 14.
    16. 16)
      • 16. Jackson, B., Rajan, S., Liao, B., et al: ‘Direction of arrival estimation using directive antennas in uniform circular arrays’, IEEE Trans. Antennas Propag., 2015, 63, (2), pp. 736747.
    17. 17)
      • 17. Yang, K., Zhao, Z., Zhu, X., et al: ‘Resolving ambiguities in DOA estimation by optimizing the element orientations’. Proc. Antennas Propagation Society Int. Symp. (APSURSI), July 2013, pp. 13261327.
    18. 18)
      • 18. He, Z., Zhao, Z., Nie, Z., et al: ‘Resolving manifold ambiguities for sparse array using planar substrates’, IEEE Trans. Antennas Propag., 2012, 60, (5), pp. 25582562.
    19. 19)
      • 19. Gazzah, H., Marcos, S.: ‘Cramer–Rao bounds for antenna array design’, IEEE Trans. Signal Process., 2006, 54, (1), pp. 336345.
    20. 20)
      • 20. Gazzah, H., Abed-Meraim, K.: ‘Optimum ambiguity-free directional and omnidirectional planar antenna arrays for DOA estimation’, IEEE Trans. Signal Process., 2009, 57, (10), pp. 39423953.
    21. 21)
      • 21. Baysal, U., Moses, R.: ‘On the geometry of isotropic arrays’, IEEE Trans. Signal Process., 2003, 51, (6), pp. 14691478.
    22. 22)
      • 22. Gazzah, H., Delmas, J.P., Jesus, S.M.: ‘Improved direction finding using a maneuverable array of directional sensors’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), April 2015, pp. 27992803.
    23. 23)
      • 23. Potter, P.: ‘A new horn antenna with suppressed sidelobes and equal beamwidths’, J. Microw., 1963, 6, pp. 7178.
    24. 24)
      • 24. Stoica, P., Nehorai, A.: ‘MUSIC, maximum likelihood, and Cramer–Rao bound’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (5), pp. 720741.
    25. 25)
      • 25. Stoica, P., Nehorai, A.: ‘MUSIC, maximum likelihood, and Cramer–Rao bound: further results and comparisons’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (12), pp. 21402150.
    26. 26)
      • 26. Kirkpatrick, S., Gelatt, C.Jr, Vecchi, M.: ‘Optimization by simulated annealing’, Science, 1983, 220, (4598), pp. 671680.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0163
Loading

Related content

content/journals/10.1049/iet-spr.2017.0163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address