access icon free Message passing detection for large-scale MIMO systems: damping factor analysis

A message passing detector based on belief propagation (BP) algorithm for Markov random fields (MRF-BP) and factor graph (FG-BP) graphical models is analysed under different large-scale (LS) multiple-input multiple-output (MIMO) scenarios, including system parameters, such as damping factor (DF), number of users and number of antennas, from to antennas. Specifically, the DF variation under different number of antennas configuration and signal-to-noise ratio (SNR) regions is extensively evaluated; bit error rate (BER) performance and computational complexity are assessed over different scenarios. Numerical results lead to a great performance gain with damped MRF-BP approach, overcoming FG-BP scheme in specific scenarios, with no extra computational complexity. Also, message damping (MD) method resulted in faster convergence of MRF-BP algorithm in LS scenarios, evidencing that, besides the performance gain, MD technique can lead to a computational complexity reduction. Specifically under low number of transmit antennas scenarios, the DF value needs to be carefully chosen. Furthermore, based on the proposed analysis, optimal value for the DF is determined considering wide LS antennas scenarios and SNR regions.

Inspec keywords: message passing; error statistics; MIMO communication; Markov processes; graph theory; telecommunication computing; transmitting antennas; computational complexity; convergence

Other keywords: Markov random fields; bit error rate performance; MD technique; antennas configuration; computational complexity; FG-BP scheme; transmit antennas scenarios; factor graph; convergence; LS scenarios; BER; signal-to-noise ratio regions; damping factor analysis; large-scale MIMO systems; performance gain; SNR; MRF; DF variation; belief propagation algorithm; message passing detection

Subjects: Distributed systems software; Radio links and equipment; Combinatorial mathematics; Communications computing; Markov processes; Computational complexity; Markov processes; Single antennas; Combinatorial mathematics

References

    1. 1)
      • 13. Yue, Z., Guo, Q., Xiang, W.: ‘Complex Gaussian belief propagation algorithms for distributed multicell multiuser MIMO detection with imperfect channel state information’. 2014 IEEE 25th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communication (PIMRC), 2–5 September 2014, pp. 19021907.
    2. 2)
      • 23. Heskes, T., Albers, K., Kappen, B.: ‘Approximate inference and constrained optimization’. Proc. of the Nineteenth Conf. on Uncertainty in Artificial Intelligence. UAI'03, San Francisco, CA, USA, 2003, pp. 313320. Available from: http://dl.acm.org/citation.cfm?id=2100584.2100622.
    3. 3)
      • 11. Suneel, M., Som, P., Chockalingam, A., et al: ‘Belief propagation based decoding of large non-orthogonal STBCS’. IEEE Int. Symp. Information Theory, 2009. ISIT 2009, June 28–July 3 2009, pp. 20032007.
    4. 4)
      • 25. Frey, B.J.: ‘Graphical models for machine learning and digital communication’ (MIT Press, Cambridge, MA, USA, 1998).
    5. 5)
      • 16. Yoon, S., Chae, C.B.: ‘Low-complexity MIMO detection based on belief propagation over pairwise graphs’, IEEE Trans. Veh. Technol., 2014, 63, (5), pp. 23632377.
    6. 6)
      • 1. Ericsson, A.: ‘Traffic and market report: on the pulse of the networked society’. Technical Report 198/287 01-FGB 101 220, Ericsson, Stockholm, Sweden, 2012.
    7. 7)
      • 7. Zheng, K., Zhao, L., Mei, J., et al: ‘Survey of large-scale MIMO systems’, IEEE Commun. Surv. Tutor., 2015, 17, (3), pp. 17381760.
    8. 8)
      • 27. Heckerman, D., Wellman, M.P.: ‘Bayesian networks’, Commun. ACM, 1995, 38, (3), pp. 2730. Available at http://doi.acm.org/10.1145/203330.203336.
    9. 9)
      • 2. Telatar, E.: ‘Capacity of multi-antenna Gaussian channels’, Eur. Trans. Telecommun., 1999, 10, (6), pp. 585595. Available at http://dx.doi.org/10.1002/ett.4460100604.
    10. 10)
      • 10. Som, P., Datta, T., Chockalingam, A., et al: ‘Improved large-MIMO detection based on damped belief propagation’. 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo), 6–8 January 2010, pp. 15.
    11. 11)
      • 9. Rajan, B.S., Mohammed, S.K., Chockalingam, A., et al: ‘Low-complexity near-ml decoding of large non-orthogonal STBCS using reactive TABU search’. IEEE Int. Symp. Information Theory, 2009. ISIT 2009., 2009, pp. 19931997.
    12. 12)
      • 17. Liu, L., Yuen, C., Guan, Y.L., et al: ‘Convergence analysis and assurance for Gaussian message passing iterative detector in massive MU-MIMO systems’, IEEE Trans. Wirel. Commun., 2016, 15, (9), pp. 64876501.
    13. 13)
      • 14. Su, Q., Wu, Y.C.: ‘Convergence analysis of the variance in Gaussian belief propagation’, IEEE Trans. Signal Process., 2014, 62, (19), pp. 51195131.
    14. 14)
      • 5. Rusek, F., Persson, D., Lau, B.K., et al: ‘Scaling up MIMO: opportunities and challenges with very large arrays’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 4060.
    15. 15)
      • 8. Vardhan, K., Mohammed, S.K., Chockalingam, A., et al: ‘A low-complexity detector for large MIMO systems and multicarrier CDMA systems’, IEEE J. Sel. Areas Commun., 2008, 26, (3), pp. 473485.
    16. 16)
      • 22. Yuille, A.L.: ‘A double-loop algorithm to minimize the Bethe and Kikuchi free energies’, Neural Comput., 2001, 14, p. 2002.
    17. 17)
      • 21. Pretti, M.: ‘A message-passing algorithm with damping’, J. Stat. Mech. Theory Exp., 2005, 2005, (11), p. P11008.
    18. 18)
      • 19. Mooij, J.M., Kappen, H.J.: ‘Sufficient conditions for convergence of the sum-product algorithm’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 44224437.
    19. 19)
      • 26. Chockalingam, A., Rajan, B.S.: ‘Large MIMO systems’ (Cambridge University Press, 2014).
    20. 20)
      • 30. Aji, S.M., McEliece, R.J.: ‘The generalized distributive law’, IEEE Trans. Inf. Theory, 2000, 46, (2), pp. 325343.
    21. 21)
      • 3. Foschini, G.J., Gans, M.J.: ‘On limits of wireless communications in a fading environment when using multiple antennas’, Wirel. Pers. Commun., 1998, 6, pp. 311335.
    22. 22)
      • 18. Yang, P., Xiao, Y., Guan, Y.L., et al: ‘Single-carrier SM-MIMO: a promising design for broadband large-scale antenna systems’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 16871716.
    23. 23)
      • 28. Griffeath, D.: ‘Introduction to Markov random fields’, in Kerney, J.G., Snell, J.L., Knupp, A.W. (Eds.): ‘Denumerable Markov chains’ (Springer-Verlag, New York, 1976, 2nd edn.).
    24. 24)
      • 20. Murphy, K.P., Weiss, Y., Jordan, M.I.: ‘Loopy belief propagation for approximate inference: An empirical study’. Proc. Fifteenth Conf. on Uncertainty in Artificial Intelligence, San Francisco, 1999, pp. 467475.
    25. 25)
      • 12. Som, P., Datta, T., Srinidhi, N., et al: ‘Low-complexity detection in large-dimension MIMO-ISI channels using graphical models’, IEEE J. Sel. Topics Signal Process., 2011, 5, (8), pp. 14971511.
    26. 26)
      • 29. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: ‘Factor graphs and the sum-product algorithm’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 498519.
    27. 27)
      • 4. Hoydis, J., ten Brink, S., Debbah, M.: ‘Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 160171.
    28. 28)
      • 24. Narasimhan, T.L., Chockalingam, A., Rajan, B.S.: ‘Factor graph based joint detection/decoding for LDPC coded large-MIMO systems’. 2012 IEEE 75th Vehicular Technology Conf. (VTC Spring), 6–9 May 2012, pp. 15.
    29. 29)
      • 15. Takahashi, T., Ibi, S., Ohgane, T., et al: ‘On normalized belief of Gaussian BP in correlated large MIMO channels’. 2016 Int. Symp. Information Theory and Its Applications (ISITA), October 30–November 2 2016, pp. 458462.
    30. 30)
      • 6. Marzetta, T.L.: ‘Noncooperative cellular wireless with unlimited numbers of base station antennas’, IEEE Trans. Wirel. Commun., 2010, 9, (11), pp. 35903600.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0148
Loading

Related content

content/journals/10.1049/iet-spr.2017.0148
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading