Message passing detection for large-scale MIMO systems: damping factor analysis

Message passing detection for large-scale MIMO systems: damping factor analysis

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A message passing detector based on belief propagation (BP) algorithm for Markov random fields (MRF-BP) and factor graph (FG-BP) graphical models is analysed under different large-scale (LS) multiple-input multiple-output (MIMO) scenarios, including system parameters, such as damping factor (DF), number of users and number of antennas, from to antennas. Specifically, the DF variation under different number of antennas configuration and signal-to-noise ratio (SNR) regions is extensively evaluated; bit error rate (BER) performance and computational complexity are assessed over different scenarios. Numerical results lead to a great performance gain with damped MRF-BP approach, overcoming FG-BP scheme in specific scenarios, with no extra computational complexity. Also, message damping (MD) method resulted in faster convergence of MRF-BP algorithm in LS scenarios, evidencing that, besides the performance gain, MD technique can lead to a computational complexity reduction. Specifically under low number of transmit antennas scenarios, the DF value needs to be carefully chosen. Furthermore, based on the proposed analysis, optimal value for the DF is determined considering wide LS antennas scenarios and SNR regions.


    1. 1)
      • 1. Ericsson, A.: ‘Traffic and market report: on the pulse of the networked society’. Technical Report 198/287 01-FGB 101 220, Ericsson, Stockholm, Sweden, 2012.
    2. 2)
      • 2. Telatar, E.: ‘Capacity of multi-antenna Gaussian channels’, Eur. Trans. Telecommun., 1999, 10, (6), pp. 585595. Available at
    3. 3)
      • 3. Foschini, G.J., Gans, M.J.: ‘On limits of wireless communications in a fading environment when using multiple antennas’, Wirel. Pers. Commun., 1998, 6, pp. 311335.
    4. 4)
      • 4. Hoydis, J., ten Brink, S., Debbah, M.: ‘Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?’, IEEE J. Sel. Areas Commun., 2013, 31, (2), pp. 160171.
    5. 5)
      • 5. Rusek, F., Persson, D., Lau, B.K., et al: ‘Scaling up MIMO: opportunities and challenges with very large arrays’, IEEE Signal Process. Mag., 2013, 30, (1), pp. 4060.
    6. 6)
      • 6. Marzetta, T.L.: ‘Noncooperative cellular wireless with unlimited numbers of base station antennas’, IEEE Trans. Wirel. Commun., 2010, 9, (11), pp. 35903600.
    7. 7)
      • 7. Zheng, K., Zhao, L., Mei, J., et al: ‘Survey of large-scale MIMO systems’, IEEE Commun. Surv. Tutor., 2015, 17, (3), pp. 17381760.
    8. 8)
      • 8. Vardhan, K., Mohammed, S.K., Chockalingam, A., et al: ‘A low-complexity detector for large MIMO systems and multicarrier CDMA systems’, IEEE J. Sel. Areas Commun., 2008, 26, (3), pp. 473485.
    9. 9)
      • 9. Rajan, B.S., Mohammed, S.K., Chockalingam, A., et al: ‘Low-complexity near-ml decoding of large non-orthogonal STBCS using reactive TABU search’. IEEE Int. Symp. Information Theory, 2009. ISIT 2009., 2009, pp. 19931997.
    10. 10)
      • 10. Som, P., Datta, T., Chockalingam, A., et al: ‘Improved large-MIMO detection based on damped belief propagation’. 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo), 6–8 January 2010, pp. 15.
    11. 11)
      • 11. Suneel, M., Som, P., Chockalingam, A., et al: ‘Belief propagation based decoding of large non-orthogonal STBCS’. IEEE Int. Symp. Information Theory, 2009. ISIT 2009, June 28–July 3 2009, pp. 20032007.
    12. 12)
      • 12. Som, P., Datta, T., Srinidhi, N., et al: ‘Low-complexity detection in large-dimension MIMO-ISI channels using graphical models’, IEEE J. Sel. Topics Signal Process., 2011, 5, (8), pp. 14971511.
    13. 13)
      • 13. Yue, Z., Guo, Q., Xiang, W.: ‘Complex Gaussian belief propagation algorithms for distributed multicell multiuser MIMO detection with imperfect channel state information’. 2014 IEEE 25th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communication (PIMRC), 2–5 September 2014, pp. 19021907.
    14. 14)
      • 14. Su, Q., Wu, Y.C.: ‘Convergence analysis of the variance in Gaussian belief propagation’, IEEE Trans. Signal Process., 2014, 62, (19), pp. 51195131.
    15. 15)
      • 15. Takahashi, T., Ibi, S., Ohgane, T., et al: ‘On normalized belief of Gaussian BP in correlated large MIMO channels’. 2016 Int. Symp. Information Theory and Its Applications (ISITA), October 30–November 2 2016, pp. 458462.
    16. 16)
      • 16. Yoon, S., Chae, C.B.: ‘Low-complexity MIMO detection based on belief propagation over pairwise graphs’, IEEE Trans. Veh. Technol., 2014, 63, (5), pp. 23632377.
    17. 17)
      • 17. Liu, L., Yuen, C., Guan, Y.L., et al: ‘Convergence analysis and assurance for Gaussian message passing iterative detector in massive MU-MIMO systems’, IEEE Trans. Wirel. Commun., 2016, 15, (9), pp. 64876501.
    18. 18)
      • 18. Yang, P., Xiao, Y., Guan, Y.L., et al: ‘Single-carrier SM-MIMO: a promising design for broadband large-scale antenna systems’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 16871716.
    19. 19)
      • 19. Mooij, J.M., Kappen, H.J.: ‘Sufficient conditions for convergence of the sum-product algorithm’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 44224437.
    20. 20)
      • 20. Murphy, K.P., Weiss, Y., Jordan, M.I.: ‘Loopy belief propagation for approximate inference: An empirical study’. Proc. Fifteenth Conf. on Uncertainty in Artificial Intelligence, San Francisco, 1999, pp. 467475.
    21. 21)
      • 21. Pretti, M.: ‘A message-passing algorithm with damping’, J. Stat. Mech. Theory Exp., 2005, 2005, (11), p. P11008.
    22. 22)
      • 22. Yuille, A.L.: ‘A double-loop algorithm to minimize the Bethe and Kikuchi free energies’, Neural Comput., 2001, 14, p. 2002.
    23. 23)
      • 23. Heskes, T., Albers, K., Kappen, B.: ‘Approximate inference and constrained optimization’. Proc. of the Nineteenth Conf. on Uncertainty in Artificial Intelligence. UAI'03, San Francisco, CA, USA, 2003, pp. 313320. Available from:
    24. 24)
      • 24. Narasimhan, T.L., Chockalingam, A., Rajan, B.S.: ‘Factor graph based joint detection/decoding for LDPC coded large-MIMO systems’. 2012 IEEE 75th Vehicular Technology Conf. (VTC Spring), 6–9 May 2012, pp. 15.
    25. 25)
      • 25. Frey, B.J.: ‘Graphical models for machine learning and digital communication’ (MIT Press, Cambridge, MA, USA, 1998).
    26. 26)
      • 26. Chockalingam, A., Rajan, B.S.: ‘Large MIMO systems’ (Cambridge University Press, 2014).
    27. 27)
      • 27. Heckerman, D., Wellman, M.P.: ‘Bayesian networks’, Commun. ACM, 1995, 38, (3), pp. 2730. Available at
    28. 28)
      • 28. Griffeath, D.: ‘Introduction to Markov random fields’, in Kerney, J.G., Snell, J.L., Knupp, A.W. (Eds.): ‘Denumerable Markov chains’ (Springer-Verlag, New York, 1976, 2nd edn.).
    29. 29)
      • 29. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: ‘Factor graphs and the sum-product algorithm’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 498519.
    30. 30)
      • 30. Aji, S.M., McEliece, R.J.: ‘The generalized distributive law’, IEEE Trans. Inf. Theory, 2000, 46, (2), pp. 325343.

Related content

This is a required field
Please enter a valid email address