http://iet.metastore.ingenta.com
1887

Seismic trace noise reduction by wavelets and double threshold estimation

Seismic trace noise reduction by wavelets and double threshold estimation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose the seismic trace noise reduction by wavelets and double threshold estimation method (STNRW), that is based on the discrete wavelet transform, estimates two thresholds instead of the one threshold estimation of the traditional methods. The authors verify the robustness of the method proving that the probability of classification error for a noisy wavelet coefficient decreases, as the length of the signal increases. The authors perform Monte Carlo simulations considering eight seismic traces obtained from astsa R package with different signal-noise-to-ratio (SNR) values in order to compare the performance of the new method with three denoising methods well-known in the literature. The results show that the STNRW method is efficient.

References

    1. 1)
      • 1. Han, J., van der Baan, M.: ‘Microseismic and seismic denoising via ensemble empirical mode decomposition and adaptive thresholding’, Geo phys., 2015, 80, (6), pp. KS69KS80.
    2. 2)
      • 2. Mohanalin, J., Prabavathy, S., Torrents-Barrena, J., et al: ‘A novel wavelet seismic denoising method using type ii fuzzy’, Appl. Soft Comput., 2016, 48, pp. 507521.
    3. 3)
      • 3. Mousavi, S.M., Langston, C.A.: ‘Hybrid seismic denoising using higher-order statistics and improved wavelet block thresholding’, Bull. Seismol. Soc. Am., 2016, 106, (4), pp. 13801393.
    4. 4)
      • 4. Donoho, D.L., Johnstone, I.M.: ‘Adapting to unknown smoothness via wavelet shrinkage’, J. Am. Stat. Assoc., 1995, 90, (432), pp. 12001224.
    5. 5)
      • 5. Johnstone, I.M., Silverman, B.W.: ‘Empirical Bayes selection of wavelet thresholds’, Ann. Stat., 2005, 33, (4), pp. 17001752.
    6. 6)
      • 6. Percival, D.B., Walden, A.T.: ‘Wavelet methods for time series analysis’ (Cambridge university press, 2006, Vol4).
    7. 7)
      • 7. Damati, A., Daoud, O., Hamarsheh, Q.: ‘Enhancing the odd peaks detection in OFDM systems using wavelet transforms’, Int. J. Comm. Netw. Syst. Sci., 2016, 9, (07), p. 295.
    8. 8)
      • 8. Han, G., Xu, Z.: ‘Electrocardiogram signal denoising based on a new improved wavelet thresholding’, Rev. Sci. Instrum., 2016, 87, (8), p. 084303.
    9. 9)
      • 9. Condat, L.: ‘A direct algorithm for 1d total variation denoising’, IEEE Signal Process. Lett., 2013, 20, (11), pp. 10541057.
    10. 10)
      • 10. Iris, D.M.C.: ‘The iris dmc dataselect webservice’, 2016. Available at http://service.iris.edu/fdsnws/dataselect/1/.
    11. 11)
      • 11. Liu, Y., Dang, B., Li, Y., et al: ‘Applications of Savitzky-Golay filter for seismic random noise reduction’, Acta Geophys., 2016, 64, (1), pp. 101124.
    12. 12)
      • 12. Ning, X., Selesnick, I.W.: ‘ECG enhancement and QRS detection based on sparse derivatives’, Biomed. Signal Proc. Control, 2013, 8, (6), pp. 713723.
    13. 13)
      • 13. Perrone, D., Favaro, P.: ‘A clearer picture of total variation blind deconvolution’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (6), pp. 10411055.
    14. 14)
      • 14. Mooney, C.Z.: ‘Monte Carlo simulation’ (Sage Publications, 1997, Vol116).
    15. 15)
      • 15. Krutsch, R., Naidu, S.: ‘Monte Carlo method based precision analysis of deep convolution nets’. IEEE Conf. on Design and Architectures for Signal and Image Processing (DASIP), 2016, pp. 162167.
    16. 16)
      • 16. Martino, L., Plata, J., Louzada, F.: ‘A Monte Carlo scheme for node-specific inference over wireless sensor networks’, IEEE Sens. Array Multichannel Signal Process. Workshop (SAM), 2016, pp. 15..
    17. 17)
      • 17. Meyer, Y.: ‘Wavelets-algorithms and applications’, Wavelets-Algorithms Appl. Soc. Ind. Appl. Math. Transl., 1993, 142, p. 1.
    18. 18)
      • 18. Stein, C.M.: ‘Estimation of the mean of a multivariate normal distribution’, Ann. Stat., 1981, 9, (6), pp. 11351151.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0061
Loading

Related content

content/journals/10.1049/iet-spr.2017.0061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address