access icon free Adaptive consensus-based distributed state estimator for non-linear systems in the presence of multiplicative noise

The problem of consensus-based distributed state estimation of a non-linear dynamical system in the presence of multiplicative observation noise is investigated in this study. Generalised extended information filter (GEIF) is developed for non-linear state estimation in the information-space framework. To fuse the information contribution of local estimators, an average consensus algorithm is employed. To achieve faster convergence towards consensus, a novel technique is proposed to modify the consensus weights, adaptively. Computational complexity of the proposed estimator is also analysed theoretically to demonstrate the computational advantage of the adaptive consensus-based distributed GEIF over the centralised counterpart. Moreover, stability of local estimators in terms of mean-square boundedness of state estimation error is guaranteed, in the presence of multiplicative noise. Simulation results are provided to evaluate performance of the proposed adaptive distributed estimator for a target-tracking problem in a wireless sensor network.

Inspec keywords: filtering theory; state estimation; adaptive estimation; adaptive control; stability; nonlinear dynamical systems; computational complexity

Other keywords: consensus weights; multiplicative observation noise; nonlinear state estimation; nonlinear dynamical system; GEIF; local estimator stability; adaptive consensus-based distributed state estimator; computational complexity; average consensus algorithm; target-tracking problem; information-space framework; wireless sensor network; generalised extended information filter

Subjects: Stability in control theory; Computational complexity; Simulation, modelling and identification; Nonlinear control systems; Self-adjusting control systems; Other topics in statistics; Signal processing theory

References

    1. 1)
      • 13. Calafiore, G.C., Abrate, F.: ‘Distributed linear estimation over sensor networks’, Int. J. Control, 2009, 82, (5), pp. 868882.
    2. 2)
      • 5. Battistelli, G., Chisci, L.: ‘Stability of consensus extended Kalman filter for distributed state estimation’, Automatica, 2016, 68, pp. 169178.
    3. 3)
      • 15. Boyd, S., Diaconis, P., Parrilo, P., et al: ‘Fastest mixing Markov chain on graphs with symmetries’, SIAM J. Optim., 2009, 20, (2), pp. 792819.
    4. 4)
      • 12. Jafarizadeh, S., Jamalipour, A.: ‘Fastest distributed consensus problem on fusion of two star sensor networks’, IEEE Sensors J., 2011, 11, (10), pp. 24942506.
    5. 5)
      • 11. Das, S., Moura, J.M.F.: ‘Distributed Kalman filtering with dynamic observations consensus’, IEEE Trans. Signal Process., 2015, 63, (17), pp. 44584473.
    6. 6)
      • 19. Keshavarz-Mohammadiyan, A., Khaloozadeh, H.: ‘PIAPF for manoeuvring target tracking in the presence of multiplicative noise’, IET Radar Sonar Navig., 2017, 11, (2), pp. 370378, http://digital-library.theiet.org/content/journals/iet-rsn.
    7. 7)
      • 17. Hu, X., Hu, Y., Xu, B.: ‘Generalised Kalman filter tracking with multiplicative measurement noise in a wireless sensor network’, IET Signal Process., 2014, 8, (5), pp. 467474.
    8. 8)
      • 4. Battistelli, G., Chisci, L., Mugnai, G., et al: ‘Consensus-based linear and nonlinear filtering’, IEEE Trans. Autom. Control, 2015, 60, (5), pp. 14101415.
    9. 9)
      • 1. Xie, L., Choi, D.H., Kar, S., et al: ‘Fully distributed state estimation for wide-area monitoring systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 11541169.
    10. 10)
      • 18. Keshavarz-Mohammadiyan, A., Khaloozadeh, H.: ‘Interacting multiple model and sensor selection algorithms for maneuvering target tracking in wireless sensor networks with multiplicative noise’, Int. J. Syst. Sci., 2017, 48, (5), pp. 899908.
    11. 11)
      • 21. Eaton, M.L.: ‘Multivariate statistics: a vector space approach’ (John Wiley and Sons, New York, USA, 1983).
    12. 12)
      • 7. Zhou, Y., Wang, D., Li, J.: ‘Consensus 3-D bearings-only tracking in switching sensor networks’, Signal Process., 2014, 105, pp. 148155.
    13. 13)
      • 24. Dorf, R.C., Bishop, R.H.: ‘Modern control systems’ (Prentice Hall, New Jersey, USA, 2010, 12th edn.).
    14. 14)
      • 10. Li, W., Wang, Z., Wei, G., et al: ‘A survey on multisensor fusion and consensus filtering for sensor networks’, Discrete Dyn. Nat. Soc., 2015, 2015, p. 12, Article ID 683701.
    15. 15)
      • 2. Battistelli, G., Chisci, L., Fantacci, C., et al: ‘Consensus-based multiple-model Bayesian filtering for distributed tracking’, IET Radar Sonar Navig., 2015, 9, (4), pp. 401410.
    16. 16)
      • 16. Hu, X., Bao, M., Zhang, X.P., et al: ‘Generalized iterated Kalman filter and its performance evaluation’, IEEE Trans. Signal Process., 2015, 63, (12), pp. 32043217.
    17. 17)
      • 23. Kamal, A.T., Farrell, J.A., Roy-Chowdhury, A.K.: ‘Information weighted consensus filters and their application in distributed camera networks’, IEEE Trans. Autom. Control, 2013, 58, (12), pp. 31123125.
    18. 18)
      • 8. Chen, C., Zhu, S., Guan, X., et al: ‘Wireless sensor networks distributed consensus estimation’ (Springer, Berlin, Germany, 2014).
    19. 19)
      • 9. Olfati-Saber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    20. 20)
      • 3. Battistelli, G., Chisci, L.: ‘Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability’, Automatica, 2014, 50, (3), pp. 707718.
    21. 21)
      • 14. Jakovetić, D., Xavier, J., Moura, J.M.F.: ‘Weight optimization for consensus algorithms with correlated switching topology’, IEEE Trans. Signal Process., 2010, 58, (7), pp. 37883801.
    22. 22)
      • 6. Hlinka, O., Slučiak, O., Hlawatsch, F., et al: ‘Likelihood consensus and its application to distributed particle filtering’, IEEE Trans. Signal Process., 2012, 60, (8), pp. 43344349.
    23. 23)
      • 22. Reif, K., Gunther, S., Yaz, E., et al: ‘Stochastic stability of the discrete-time extended Kalman filter’, IEEE Trans. Autom. Control, 1999, 44, (4), pp. 714728.
    24. 24)
      • 20. Mutambara, A.G.O.: ‘Decentralized estimation and control for multisensor systems’ (CRC Press, FL, USA, 1998).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0052
Loading

Related content

content/journals/10.1049/iet-spr.2017.0052
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading