access icon free BOMP-based angle estimation with polarimetric MIMO radar with spatially spread crossed-dipole

For polarimetric multi-input multi-output (MIMO) radar with spatially spread crossed-dipole, this article studies the problem of joint direction of arrival (DOA) and polarisation parameter estimation based on block-orthogonal matching pursuit (BOMP) algorithm. First, the signal model of polarimetric MIMO radar with spatially spread crossed-dipole is established, and then the covariance matrix of the received data is calculated. Using the relationship between polarisation parameter and DOA in the crossed-dipole, sparse dictionary matrix is constructed within only DOA parameter and it will be translated into a block sparse problem. Then, fast BOMP algorithm is used to estimate their support positions and their amplitudes. Last, DOA estimation is calculated by support positions and polarisation parameter is estimated by the amplitudes of the support positions. The proposed algorithm has three advantages. One is that overcomplete dictionary is constructed within only the DOA, which has a small computational complexity. Another one is that the problem of strong mutual coupling among collocated crossed-dipole is solved by using the spatially spread crossed-dipole. The last one is that the DOA and polarisation estimations can pair automatically without any additional processing. Computer simulation results demonstrate the effectiveness of the proposed algorithm.

Inspec keywords: radar polarimetry; sparse matrices; MIMO radar; covariance matrices; direction-of-arrival estimation

Other keywords: crossed-dipole sparse dictionary matrix; covariance matrix; computational complexity; BOMP-based angle estimation; block-orthogonal matching pursuit algorithm; polarimetric MIMO radar; polarimetric multi-input multi-output radar; polarisation parameter; joint direction of arrival and polarisation parameter estimation; support positions

Subjects: Algebra; Signal processing and detection; Radar equipment, systems and applications

References

    1. 1)
      • 7. Zheng, G., Tang, J.: ‘Two-dimensional DOA estimation for monostatic MIMO radar with electromagnetic vector received sensors’, Int. J. Antennas Propag., 2016, 2016, pp. 110.
    2. 2)
      • 12. Stoica, P., Sharman, K.C.: ‘Maximum likelihood methods for direction-of-arrival’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (7), pp. 11321143.
    3. 3)
      • 18. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666.
    4. 4)
      • 9. Capon, J.: ‘High-resolution frequency-wavenumber spectrum analysis’, Proc. IEEE, 1969, 57, (8), pp. 14081418.
    5. 5)
      • 21. Liu, J., Zhou, W., Wang, X.: ‘Fourth-order cumulants-based sparse representation approach for DOA estimation in MIMO radar with unknown mutual coupling’, Signal Process., 2016, 128, pp. 123130.
    6. 6)
      • 13. Viberg, M., Ottersten, B.: ‘Sensor array processing based on subspace fitting’, IEEE Trans. Signal Process., 1991, 39, (5), pp. 11101121.
    7. 7)
      • 24. Zheng, G., Chen, B., Yang, M., et al: ‘Joint 2D-DOA and polarization estimation using a sparse uniform array of spatially noncollocating electromagnetic vector sensors’, Sci. Sin., 2014, 44, (9), pp. 11711192.
    8. 8)
      • 10. Schmidt, R.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, 34, (3), pp. 276280.
    9. 9)
      • 4. Zheng, G., Yang, M., Guo, W., et al: ‘Joint DOD and DOA estimation for bistatic polarimetric MIMO radar’. IEEE Int. Conf. on Signal Processing, Beijing, 2012, pp. 329332.
    10. 10)
      • 22. Wang, X., Wang, W., Li, X., et al: ‘Sparsity-aware DOA estimation scheme for noncircular source in MIMO radar’, Sensors, 2016, 16, (4), pp. 113.
    11. 11)
      • 6. Jiang, H., Zhang, Y., Li, J., et al: ‘A PARAFAC-based algorithm for multidimensional parameter estimation in polarimetric bistatic MIMO radar’, EURASIP J. Adv. Signal Process., 2013, 2013, pp. 114.
    12. 12)
      • 19. Wang, X., Wang, W., Liu, J., et al: ‘A sparse representation scheme for angle estimation in monostatic MIMO radar’, Signal Process., 2014, 104, (6), pp. 258263.
    13. 13)
      • 1. Gogineni, S., Nehorai, A.: ‘Polarimetric MIMO radar with distributed antennas for target detection’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 16891697.
    14. 14)
      • 14. Malioutov, D., Cetin, M., Willsky, A.S.: ‘A sparse signal reconstruction perspective for source localization with sensor arrays’, IEEE Trans. Signal Process., 2003, 53, (8), pp. 30103022.
    15. 15)
      • 2. Jiang, H., Wang, D.F., Liu, C.: ‘Estimation of DOD and 2D-DOA and polarizations for bistatic MIMO radar’. IEEE 19th Annual Wireless and Optical Communications Conf., Shanghai, 2010, pp. 15.
    16. 16)
      • 16. Liu, Z., Huang, Z., Zhou, Y.: ‘Array signal processing via sparsity-inducing representation of the array covariance matrix’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (3), pp. 17101724.
    17. 17)
      • 8. Zheng, G., Wu, B.: ‘Polarisation smoothing for coherent source direction finding with multiple-input and multiple-output electromagnetic vector sensor array’, IET Signal Process., 2016, 10, (8), pp. 873879.
    18. 18)
      • 5. Zheng, G., Yang, M., Chen, B., et al: ‘Angle and polarization estimation using ESPRIT with polarimetric MIMO radar’. IET Int. Conf. on Radar Systems, Glasgow, 2012, pp. 14.
    19. 19)
      • 3. Bencheikh, M.L., Wang, Y.: ‘Combined ESPRIT-RootMUSIC for DOA-DOD estimation in polarimetric bistatic MIMO radar’, Prog. Electromagn. Res. Lett., 2011, 22, pp. 109117.
    20. 20)
      • 20. Wang, X., Wei, W., Xin, L., et al: ‘Real-valued covariance vector sparsity-inducing DOA estimation for monostatic MIMO radar’, Sensors, 2015, 15, (11), pp. 2827128286.
    21. 21)
      • 23. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: ‘Block-sparse signals: uncertainty relations and efficient recovery’, IEEE Trans. Signal Process., 2010, 58, (6), pp. 30423054.
    22. 22)
      • 15. Yin, J., Chen, T.: ‘Direction-of-arrival estimation using a sparse representation of array covariance vectors’, IEEE Trans. Signal Process., 2011, 59, (9), pp. 44894493.
    23. 23)
      • 11. Roy, R., Kailath, T.: ‘ESPRIT-estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (7), pp. 984995.
    24. 24)
      • 17. Hyder, M.M., Mahata, K.: ‘Direction-of-arrival estimation using a mixed l2,0 norm approximation’, IEEE Trans. Signal Process., 2010, 58, (9), pp. 46464655.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2017.0018
Loading

Related content

content/journals/10.1049/iet-spr.2017.0018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading