BOMP-based angle estimation with polarimetric MIMO radar with spatially spread crossed-dipole

BOMP-based angle estimation with polarimetric MIMO radar with spatially spread crossed-dipole

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For polarimetric multi-input multi-output (MIMO) radar with spatially spread crossed-dipole, this article studies the problem of joint direction of arrival (DOA) and polarisation parameter estimation based on block-orthogonal matching pursuit (BOMP) algorithm. First, the signal model of polarimetric MIMO radar with spatially spread crossed-dipole is established, and then the covariance matrix of the received data is calculated. Using the relationship between polarisation parameter and DOA in the crossed-dipole, sparse dictionary matrix is constructed within only DOA parameter and it will be translated into a block sparse problem. Then, fast BOMP algorithm is used to estimate their support positions and their amplitudes. Last, DOA estimation is calculated by support positions and polarisation parameter is estimated by the amplitudes of the support positions. The proposed algorithm has three advantages. One is that overcomplete dictionary is constructed within only the DOA, which has a small computational complexity. Another one is that the problem of strong mutual coupling among collocated crossed-dipole is solved by using the spatially spread crossed-dipole. The last one is that the DOA and polarisation estimations can pair automatically without any additional processing. Computer simulation results demonstrate the effectiveness of the proposed algorithm.


    1. 1)
      • 1. Gogineni, S., Nehorai, A.: ‘Polarimetric MIMO radar with distributed antennas for target detection’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 16891697.
    2. 2)
      • 2. Jiang, H., Wang, D.F., Liu, C.: ‘Estimation of DOD and 2D-DOA and polarizations for bistatic MIMO radar’. IEEE 19th Annual Wireless and Optical Communications Conf., Shanghai, 2010, pp. 15.
    3. 3)
      • 3. Bencheikh, M.L., Wang, Y.: ‘Combined ESPRIT-RootMUSIC for DOA-DOD estimation in polarimetric bistatic MIMO radar’, Prog. Electromagn. Res. Lett., 2011, 22, pp. 109117.
    4. 4)
      • 4. Zheng, G., Yang, M., Guo, W., et al: ‘Joint DOD and DOA estimation for bistatic polarimetric MIMO radar’. IEEE Int. Conf. on Signal Processing, Beijing, 2012, pp. 329332.
    5. 5)
      • 5. Zheng, G., Yang, M., Chen, B., et al: ‘Angle and polarization estimation using ESPRIT with polarimetric MIMO radar’. IET Int. Conf. on Radar Systems, Glasgow, 2012, pp. 14.
    6. 6)
      • 6. Jiang, H., Zhang, Y., Li, J., et al: ‘A PARAFAC-based algorithm for multidimensional parameter estimation in polarimetric bistatic MIMO radar’, EURASIP J. Adv. Signal Process., 2013, 2013, pp. 114.
    7. 7)
      • 7. Zheng, G., Tang, J.: ‘Two-dimensional DOA estimation for monostatic MIMO radar with electromagnetic vector received sensors’, Int. J. Antennas Propag., 2016, 2016, pp. 110.
    8. 8)
      • 8. Zheng, G., Wu, B.: ‘Polarisation smoothing for coherent source direction finding with multiple-input and multiple-output electromagnetic vector sensor array’, IET Signal Process., 2016, 10, (8), pp. 873879.
    9. 9)
      • 9. Capon, J.: ‘High-resolution frequency-wavenumber spectrum analysis’, Proc. IEEE, 1969, 57, (8), pp. 14081418.
    10. 10)
      • 10. Schmidt, R.: ‘Multiple emitter location and signal parameter estimation’, IEEE Trans. Antennas Propag., 1986, 34, (3), pp. 276280.
    11. 11)
      • 11. Roy, R., Kailath, T.: ‘ESPRIT-estimation of signal parameters via rotational invariance techniques’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (7), pp. 984995.
    12. 12)
      • 12. Stoica, P., Sharman, K.C.: ‘Maximum likelihood methods for direction-of-arrival’, IEEE Trans. Acoust. Speech Signal Process., 1990, 38, (7), pp. 11321143.
    13. 13)
      • 13. Viberg, M., Ottersten, B.: ‘Sensor array processing based on subspace fitting’, IEEE Trans. Signal Process., 1991, 39, (5), pp. 11101121.
    14. 14)
      • 14. Malioutov, D., Cetin, M., Willsky, A.S.: ‘A sparse signal reconstruction perspective for source localization with sensor arrays’, IEEE Trans. Signal Process., 2003, 53, (8), pp. 30103022.
    15. 15)
      • 15. Yin, J., Chen, T.: ‘Direction-of-arrival estimation using a sparse representation of array covariance vectors’, IEEE Trans. Signal Process., 2011, 59, (9), pp. 44894493.
    16. 16)
      • 16. Liu, Z., Huang, Z., Zhou, Y.: ‘Array signal processing via sparsity-inducing representation of the array covariance matrix’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (3), pp. 17101724.
    17. 17)
      • 17. Hyder, M.M., Mahata, K.: ‘Direction-of-arrival estimation using a mixed l2,0 norm approximation’, IEEE Trans. Signal Process., 2010, 58, (9), pp. 46464655.
    18. 18)
      • 18. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666.
    19. 19)
      • 19. Wang, X., Wang, W., Liu, J., et al: ‘A sparse representation scheme for angle estimation in monostatic MIMO radar’, Signal Process., 2014, 104, (6), pp. 258263.
    20. 20)
      • 20. Wang, X., Wei, W., Xin, L., et al: ‘Real-valued covariance vector sparsity-inducing DOA estimation for monostatic MIMO radar’, Sensors, 2015, 15, (11), pp. 2827128286.
    21. 21)
      • 21. Liu, J., Zhou, W., Wang, X.: ‘Fourth-order cumulants-based sparse representation approach for DOA estimation in MIMO radar with unknown mutual coupling’, Signal Process., 2016, 128, pp. 123130.
    22. 22)
      • 22. Wang, X., Wang, W., Li, X., et al: ‘Sparsity-aware DOA estimation scheme for noncircular source in MIMO radar’, Sensors, 2016, 16, (4), pp. 113.
    23. 23)
      • 23. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: ‘Block-sparse signals: uncertainty relations and efficient recovery’, IEEE Trans. Signal Process., 2010, 58, (6), pp. 30423054.
    24. 24)
      • 24. Zheng, G., Chen, B., Yang, M., et al: ‘Joint 2D-DOA and polarization estimation using a sparse uniform array of spatially noncollocating electromagnetic vector sensors’, Sci. Sin., 2014, 44, (9), pp. 11711192.

Related content

This is a required field
Please enter a valid email address