access icon free Cooperative spectrum estimation over large-scale cognitive radio networks

Spectrum sensing is a significant issue in cognitive radio networks which enables estimation of the frequency spectrum and hence provides frequency reuse. In the large-scale cognitive radio networks, secondary users cannot share a common spectrum since the coverage area of primary users is limited. In this study, the authors suggest a diffusion adaptive learning algorithm based on correntropy cooperation policy, which first categorises received data of secondary users into several groups, and then learns a common spectrum inside each group. The mean-square performance of proposed algorithm is analysed and supported by simulations. Experimental results show that, in a multitask cognitive network, the proposed algorithm can achieve a better mean-square deviation learning performance both in transient and steady-state regimes in comparison with other conventional algorithms.

Inspec keywords: cognitive radio; frequency allocation; cooperative communication; mean square error methods; learning (artificial intelligence); signal detection; telecommunication computing; entropy

Other keywords: multitask cognitive network; frequency spectrum estimation; mean-square performance; transient regime; steady-state regime; large-scale cognitive radio network; diffusion adaptive learning algorithm; spectrum sensing; cooperative spectrum estimation; frequency reuse; correntropy cooperation policy

Subjects: Signal detection; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Knowledge engineering techniques; Communications computing; Radio links and equipment

References

    1. 1)
      • 21. Herath, S., Rajatheva, N., Tellambura, C.: ‘Energy detection of unknown signals in fading and diversity reception’, IEEE Trans. Commun., 2011, 59, (9), pp. 24432453.
    2. 2)
      • 15. Shankar, S., Cordeiro, C., Challapali, K.: ‘Spectrum agile radios: utilization and sensing architectures’. Proc. of IEEE DySPAN, USA, 2005, pp. 160169.
    3. 3)
      • 8. Lorenzo, P., Barbarossa, S., Sayed, A.: ‘Bio-inspired decentralized radio access based on swarming mechanisms over adaptive networks’, IEEE Trans. Signal Process., 2013, 61, (12), pp. 31833197.
    4. 4)
      • 26. Xu, S., Lamare, R.C.D., Poor, H.V., et al: ‘Distributed estimation over sensor networks based on distributed conjugate gradient strategies’, IET Signal Process., 2015, 10, (3), pp. 291301.
    5. 5)
      • 1. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE J. Sel. Areas Commun., 2005, 23, (2), pp. 201220.
    6. 6)
      • 33. Zhao, X., Sayed, A.H.: ‘Distributed clustering and learning over networks’, IEEE Trans. Signal Process., 2015, 63, (13), pp. 32853300.
    7. 7)
      • 34. Nassif, R., Richard, C., Ferrari, A., et al: ‘Multitask diffusion adaptation over asynchronous networks’, IEEE Trans. Signal Process., 2016, 64, (11), pp. 28352850.
    8. 8)
      • 28. Liu, W., Pokharel, P., Principe, J.: ‘Correntropy: properties and applications in non-Gaussian signal processing’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 52865298.
    9. 9)
      • 22. Atapattu, S., Tellambura, C., Jiang, H.: ‘Energy detection based cooperative spectrum sensing in cognitive radio networks’, IEEE Trans. Wirel. Commun., 2011, 10, (4), pp. 12321241.
    10. 10)
      • 25. Lorenzo, P., Barbarossa, S., Sayed, A.H.: ‘Distributed spectrum estimation for small cell networks based on sparse diffusion adaptation’, IEEE Signal Process. Lett., 2013, 20, (12), pp. 12611265.
    11. 11)
      • 16. Ghozzi, M., Marx, F., Dohler, M., et al: ‘Cyclostatilonarilty-based test for detection of vacant frequency bands’. Proc. of IEEE CROWNCOM, Greece, June 2006, pp. 15.
    12. 12)
      • 35. Sayed, A.H.: ‘Diffusion adaptation over networks’ (Elsevier, 2013, 1st edn.).
    13. 13)
      • 6. Lorenzo, P., Barbarossa, S.: ‘A bio-inspired swarming algorithm for decentralized access in cognitive radio’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 61606174.
    14. 14)
      • 23. Cattivelli, F., Sayed, A.: ‘Distributed detection over adaptive networks using diffusion adaptation’, IEEE Trans. Signal Process., 2011, 59, (5), pp. 19171932.
    15. 15)
      • 14. Tandra, R., Sahai, A.: ‘Fundamental limits on detection in low SNR under noise uncertainty’. Proc. of IEEE WNCMC, 2005, vol. 1, pp. 464469.
    16. 16)
      • 30. Khalili, A., Rastegarnia, A., Bazzi, W.M., et al: ‘Derivation and analysis of incremental augmented complex least mean square algorithm’, IET Signal Process., 2015, 9, (4), pp. 312319.
    17. 17)
      • 36. Chen, J., Sayed, A.H.: ‘Distributed Pareto optimization via diffusion strategies’, IEEE J. Sel. Top. Signal Process., 2013, 7, (2), pp. 205220.
    18. 18)
      • 24. Miller, T.G., Xu, S., Lamare, R.C.D., et al: ‘Distributed spectrum estimation based on alternating mixed discrete-continuous adaptation’, IEEE Signal Process. Lett., 2016, 23, (4), pp. 551555.
    19. 19)
      • 18. Zeng, Y., Liang, Y., Pham, T.: ‘Spectrum sensing for OFDM signals using pilot induced auto-correlations’, IEEE J. Sel. Areas Commun., 2013, 31, (3), pp. 353363.
    20. 20)
      • 10. Peh, E.C.Y., Liang, Y.C., Guan, Y.L., et al: ‘Power control in cognitive radios under cooperative and non-cooperative spectrum sensing’, IEEE Trans. Wirel. Commun., 2011, 10, (12), pp. 42384248.
    21. 21)
      • 20. Li, Z., Yu, F., Huang, M.: ‘A distributed consensus-based cooperative spectrum sensing scheme in cognitive radios’, IEEE Trans. Veh. Technol., 2010, 59, (1), pp. 383393.
    22. 22)
      • 19. Zeng, F., Li, C., Tian, Z.: ‘Distributed compressive spectrum sensing in cooperative multihop cognitive networks’, IEEE J. Sel. Top. Signal Process., 2011, 5, (1), pp. 3748.
    23. 23)
      • 31. Huang, W., Yang, X., Liu, D., et al: ‘Diffusion LMS with component-wise variable step-size over sensor networks’, IET Signal Process., 2015, 10, (1), pp. 3745.
    24. 24)
      • 32. Hajiabadi, M., Zamiri-Jafarian, H.: ‘Distributed adaptive LMF algorithm for sparse parameter estimation in Gaussian mixture noise’. 7th Int. Symp. on Telecommunications, Tehran, 2014, pp. 10461049.
    25. 25)
      • 27. Liu, X., Tan, X.: ‘Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio’, Int. J. Commun. Syst., 2014, 27, (5), pp. 705720.
    26. 26)
      • 17. Jiang, C., Chen, Y., Liu, K.J.R., et al: ‘Renewal-theoretical dynamic spectrum access in cognitive radio network with unknown primary behavior’, IEEE J. Sel. Areas Commun., 2013, 31, (3), pp. 406416.
    27. 27)
      • 4. Bazerque, J., Giannakis, G.: ‘Distributed spectrum sensing for cognitive radio networks by exploiting sparsity’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 18471862.
    28. 28)
      • 9. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, (1), pp. 116130.
    29. 29)
      • 12. Huang, X., Wang, G., Hu, F.: ‘Multitask spectrum sensing in cognitive radio networks via spatiotemporal data mining’, IEEE Trans. Veh. Technol., 2013, 62, (2), pp. 809823.
    30. 30)
      • 7. Lorenzo, P., Barbarossa, S., Sayed, A.: ‘Decentralized resource assignment in cognitive networks based on swarming mechanisms over random graphs’, IEEE Trans. Signal Process., 2012, 60, (7), pp. 37553769.
    31. 31)
      • 29. Chen, B., Principe, J.: ‘Maximum correntropy estimation is a smoothed map estimation’, IEEE Signal Process. Lett., 2012, 19, (8), pp. 491494.
    32. 32)
      • 3. Quan, Z., Cui, S., Sayed, A. H., et al: ‘Optimal multiband joint detection for spectrum sensing in cognitive radio networks’, IEEE Trans. Signal Process., 2009, 57, pp. 11281140.
    33. 33)
      • 13. Huang, X.L., Hu, F., Wu, J., et al: ‘Intelligent cooperative spectrum sensing via hierarchical Dirichlet process in cognitive radio networks’, IEEE J. Sel. Areas Commun., 2015, 33, (05), pp. 771787.
    34. 34)
      • 5. Kim, S.J., Dall'Anese, E., Giannakis, G.B., et al: ‘Cooperative spectrum sensing for cognitive radios using Kriged Kalman filtering’, IEEE J. Sel. Top. Signal Process., 2011, 5, (1), pp. 2436.
    35. 35)
      • 11. Scutari, G., Pang, J.S.: ‘Joint sensing and power allocation in nonconvex cognitive radio games: Nash equilibria and distributed algorithms’, IEEE Trans. Inf. Theory, 2013, 59, (7), pp. 46264661.
    36. 36)
      • 2. Zhao, Q., Sadler, B.: ‘A survey of dynamic spectrum access’, IEEE Signal. Process. Mag., 2007, 24, (3), pp. 7989.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0727
Loading

Related content

content/journals/10.1049/iet-spr.2016.0727
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading