http://iet.metastore.ingenta.com
1887

Cooperative spectrum estimation over large-scale cognitive radio networks

Cooperative spectrum estimation over large-scale cognitive radio networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Spectrum sensing is a significant issue in cognitive radio networks which enables estimation of the frequency spectrum and hence provides frequency reuse. In the large-scale cognitive radio networks, secondary users cannot share a common spectrum since the coverage area of primary users is limited. In this study, the authors suggest a diffusion adaptive learning algorithm based on correntropy cooperation policy, which first categorises received data of secondary users into several groups, and then learns a common spectrum inside each group. The mean-square performance of proposed algorithm is analysed and supported by simulations. Experimental results show that, in a multitask cognitive network, the proposed algorithm can achieve a better mean-square deviation learning performance both in transient and steady-state regimes in comparison with other conventional algorithms.

References

    1. 1)
      • 1. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE J. Sel. Areas Commun., 2005, 23, (2), pp. 201220.
    2. 2)
      • 2. Zhao, Q., Sadler, B.: ‘A survey of dynamic spectrum access’, IEEE Signal. Process. Mag., 2007, 24, (3), pp. 7989.
    3. 3)
      • 3. Quan, Z., Cui, S., Sayed, A. H., et al: ‘Optimal multiband joint detection for spectrum sensing in cognitive radio networks’, IEEE Trans. Signal Process., 2009, 57, pp. 11281140.
    4. 4)
      • 4. Bazerque, J., Giannakis, G.: ‘Distributed spectrum sensing for cognitive radio networks by exploiting sparsity’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 18471862.
    5. 5)
      • 5. Kim, S.J., Dall'Anese, E., Giannakis, G.B., et al: ‘Cooperative spectrum sensing for cognitive radios using Kriged Kalman filtering’, IEEE J. Sel. Top. Signal Process., 2011, 5, (1), pp. 2436.
    6. 6)
      • 6. Lorenzo, P., Barbarossa, S.: ‘A bio-inspired swarming algorithm for decentralized access in cognitive radio’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 61606174.
    7. 7)
      • 7. Lorenzo, P., Barbarossa, S., Sayed, A.: ‘Decentralized resource assignment in cognitive networks based on swarming mechanisms over random graphs’, IEEE Trans. Signal Process., 2012, 60, (7), pp. 37553769.
    8. 8)
      • 8. Lorenzo, P., Barbarossa, S., Sayed, A.: ‘Bio-inspired decentralized radio access based on swarming mechanisms over adaptive networks’, IEEE Trans. Signal Process., 2013, 61, (12), pp. 31833197.
    9. 9)
      • 9. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutor., 2009, 11, (1), pp. 116130.
    10. 10)
      • 10. Peh, E.C.Y., Liang, Y.C., Guan, Y.L., et al: ‘Power control in cognitive radios under cooperative and non-cooperative spectrum sensing’, IEEE Trans. Wirel. Commun., 2011, 10, (12), pp. 42384248.
    11. 11)
      • 11. Scutari, G., Pang, J.S.: ‘Joint sensing and power allocation in nonconvex cognitive radio games: Nash equilibria and distributed algorithms’, IEEE Trans. Inf. Theory, 2013, 59, (7), pp. 46264661.
    12. 12)
      • 12. Huang, X., Wang, G., Hu, F.: ‘Multitask spectrum sensing in cognitive radio networks via spatiotemporal data mining’, IEEE Trans. Veh. Technol., 2013, 62, (2), pp. 809823.
    13. 13)
      • 13. Huang, X.L., Hu, F., Wu, J., et al: ‘Intelligent cooperative spectrum sensing via hierarchical Dirichlet process in cognitive radio networks’, IEEE J. Sel. Areas Commun., 2015, 33, (05), pp. 771787.
    14. 14)
      • 14. Tandra, R., Sahai, A.: ‘Fundamental limits on detection in low SNR under noise uncertainty’. Proc. of IEEE WNCMC, 2005, vol. 1, pp. 464469.
    15. 15)
      • 15. Shankar, S., Cordeiro, C., Challapali, K.: ‘Spectrum agile radios: utilization and sensing architectures’. Proc. of IEEE DySPAN, USA, 2005, pp. 160169.
    16. 16)
      • 16. Ghozzi, M., Marx, F., Dohler, M., et al: ‘Cyclostatilonarilty-based test for detection of vacant frequency bands’. Proc. of IEEE CROWNCOM, Greece, June 2006, pp. 15.
    17. 17)
      • 17. Jiang, C., Chen, Y., Liu, K.J.R., et al: ‘Renewal-theoretical dynamic spectrum access in cognitive radio network with unknown primary behavior’, IEEE J. Sel. Areas Commun., 2013, 31, (3), pp. 406416.
    18. 18)
      • 18. Zeng, Y., Liang, Y., Pham, T.: ‘Spectrum sensing for OFDM signals using pilot induced auto-correlations’, IEEE J. Sel. Areas Commun., 2013, 31, (3), pp. 353363.
    19. 19)
      • 19. Zeng, F., Li, C., Tian, Z.: ‘Distributed compressive spectrum sensing in cooperative multihop cognitive networks’, IEEE J. Sel. Top. Signal Process., 2011, 5, (1), pp. 3748.
    20. 20)
      • 20. Li, Z., Yu, F., Huang, M.: ‘A distributed consensus-based cooperative spectrum sensing scheme in cognitive radios’, IEEE Trans. Veh. Technol., 2010, 59, (1), pp. 383393.
    21. 21)
      • 21. Herath, S., Rajatheva, N., Tellambura, C.: ‘Energy detection of unknown signals in fading and diversity reception’, IEEE Trans. Commun., 2011, 59, (9), pp. 24432453.
    22. 22)
      • 22. Atapattu, S., Tellambura, C., Jiang, H.: ‘Energy detection based cooperative spectrum sensing in cognitive radio networks’, IEEE Trans. Wirel. Commun., 2011, 10, (4), pp. 12321241.
    23. 23)
      • 23. Cattivelli, F., Sayed, A.: ‘Distributed detection over adaptive networks using diffusion adaptation’, IEEE Trans. Signal Process., 2011, 59, (5), pp. 19171932.
    24. 24)
      • 24. Miller, T.G., Xu, S., Lamare, R.C.D., et al: ‘Distributed spectrum estimation based on alternating mixed discrete-continuous adaptation’, IEEE Signal Process. Lett., 2016, 23, (4), pp. 551555.
    25. 25)
      • 25. Lorenzo, P., Barbarossa, S., Sayed, A.H.: ‘Distributed spectrum estimation for small cell networks based on sparse diffusion adaptation’, IEEE Signal Process. Lett., 2013, 20, (12), pp. 12611265.
    26. 26)
      • 26. Xu, S., Lamare, R.C.D., Poor, H.V., et al: ‘Distributed estimation over sensor networks based on distributed conjugate gradient strategies’, IET Signal Process., 2015, 10, (3), pp. 291301.
    27. 27)
      • 27. Liu, X., Tan, X.: ‘Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio’, Int. J. Commun. Syst., 2014, 27, (5), pp. 705720.
    28. 28)
      • 28. Liu, W., Pokharel, P., Principe, J.: ‘Correntropy: properties and applications in non-Gaussian signal processing’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 52865298.
    29. 29)
      • 29. Chen, B., Principe, J.: ‘Maximum correntropy estimation is a smoothed map estimation’, IEEE Signal Process. Lett., 2012, 19, (8), pp. 491494.
    30. 30)
      • 30. Khalili, A., Rastegarnia, A., Bazzi, W.M., et al: ‘Derivation and analysis of incremental augmented complex least mean square algorithm’, IET Signal Process., 2015, 9, (4), pp. 312319.
    31. 31)
      • 31. Huang, W., Yang, X., Liu, D., et al: ‘Diffusion LMS with component-wise variable step-size over sensor networks’, IET Signal Process., 2015, 10, (1), pp. 3745.
    32. 32)
      • 32. Hajiabadi, M., Zamiri-Jafarian, H.: ‘Distributed adaptive LMF algorithm for sparse parameter estimation in Gaussian mixture noise’. 7th Int. Symp. on Telecommunications, Tehran, 2014, pp. 10461049.
    33. 33)
      • 33. Zhao, X., Sayed, A.H.: ‘Distributed clustering and learning over networks’, IEEE Trans. Signal Process., 2015, 63, (13), pp. 32853300.
    34. 34)
      • 34. Nassif, R., Richard, C., Ferrari, A., et al: ‘Multitask diffusion adaptation over asynchronous networks’, IEEE Trans. Signal Process., 2016, 64, (11), pp. 28352850.
    35. 35)
      • 35. Sayed, A.H.: ‘Diffusion adaptation over networks’ (Elsevier, 2013, 1st edn.).
    36. 36)
      • 36. Chen, J., Sayed, A.H.: ‘Distributed Pareto optimization via diffusion strategies’, IEEE J. Sel. Top. Signal Process., 2013, 7, (2), pp. 205220.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0727
Loading

Related content

content/journals/10.1049/iet-spr.2016.0727
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address