http://iet.metastore.ingenta.com
1887

Spatial multiplexing gain in MIMO radars with widely separated antennas

Spatial multiplexing gain in MIMO radars with widely separated antennas

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multiple-input multiple-output (MIMO) radars have attracted much attention for their superior ability to enhance a system's performance. In this study, the authors’ goal was the study of the spatial multiplexing gain of MIMO radars with widely separated antennas (WS-MIMO), which the authors showed that is equal to the number of unambiguously detectable targets. They obtained this number from two different aspects: first, by defining the ambiguity function of a WS-MIMO radar in the case of multiple targets, suitable for such purpose; Second, by modelling the MIMO radar system with a MIMO wireless channel. They showed that a MIMO radar is indeed a MIMO wireless system communicating the information about the existence of the targets. By such modelling, they could easily make the relation between dual concepts of MIMO radar and MIMO communication, one of which is the multiplexing gain.

References

    1. 1)
      • 1. Li, J., Stoica, P.: ‘MIMO radar with colocated antennas’, IEEE Signal Process. Mag., 2007, 24, (5), pp. 106114.
    2. 2)
      • 2. Li, J., Stoica, P., Xu, L., et al: ‘On parameter identifiability of MIMO radar’, IEEE Signal Process. Lett., 2007, 14, (12), pp. 968971.
    3. 3)
      • 3. Hassanien, A., Vorobyov, S.A.: ‘Transmit energy focusing for DOA estimation in MIMO radar with colocated antennas’, IEEE Trans. Signal Process., 2011, 59, (6), pp. 26692682.
    4. 4)
      • 4. Boyer, R.: ‘Performance bounds and angular resolution limit for the moving colocated MIMO radar’, IEEE Trans. Signal Process., 2011, 59, (4), pp. 15391552.
    5. 5)
      • 5. He, Q., Blum, R.S.: ‘Noncoherent versus coherent MIMO radar: performance and simplicity analysis’, Signal Process., 2012, 92, (10), pp. 24542463.
    6. 6)
      • 6. Fishler, E., Haimovich, A., Blum, R.S., et al: ‘Spatial diversity in radars-models and detection performance’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 823838.
    7. 7)
      • 7. Radmard, M., Karbasi, S.M., Nayebi, M.M.: ‘Data fusion in MIMO DVB-T -based passive coherent location’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (3), pp. 17251737.
    8. 8)
      • 8. Niu, R., Blum, R.S., Varshney, P.K., et al: ‘Target localization and tracking in noncoherent multiple-input multiple-output radar systems’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (2), pp. 14661489.
    9. 9)
      • 9. De Maio, A., Lops, M.: ‘Design principles of MIMO radar detectors’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 886898.
    10. 10)
      • 10. Aubry, A., Lops, M., Tulino, A.M., et al: ‘On MIMO detection under non-Gaussian target scattering’, IEEE Trans. Inf. Theory, 2010, 56, (11), pp. 58225838.
    11. 11)
      • 11. Chitgarha, M.M., Radmard, M., Nazari Majd, M., et al: ‘MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak’, Signal Process., 2016, 118, pp. 139152.
    12. 12)
      • 12. Daher, R., Adve, R.: ‘A notion of diversity order in distributed radar networks’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (2), pp. 818831.
    13. 13)
      • 13. Zhou, S., Liu, H., Zhao, Y., et al: ‘Target spatial and frequency scattering diversity property for diversity MIMO radar’, Signal Process., 2011, 91, (2), pp. 269276.
    14. 14)
      • 14. Zheng, L., Tse, D.: ‘Diversity and multiplexing: a fundamental trade-off in multiple-antenna channels’, IEEE Trans. Inf. Theory, 2003, 49, (5), pp. 10731096.
    15. 15)
      • 15. Lehmann, N.H., Haimovich, A.M., Blum, R.S., et al: ‘High resolution capabilities of MIMO radar’. Fortieth Asilomar Conf. Signals, Systems and Computers, 2006, ACSSC'06, 2006, pp. 2530.
    16. 16)
      • 16. Tsao, T., Weiner, D., Varshney, P., et al: ‘Ambiguity function for a bistatic radar’. Proc. of the IEEE-SP Int. Symp. on Time-Frequency and Time-Scale Analysis, October 1992, pp. 497500.
    17. 17)
      • 17. San Antonio, G., Fuhrmann, D.R., Robey, F.C.: ‘MIMO radar ambiguity functions’, IEEE J. Sel. Top. Signal Process., 2007, 1, (1), pp. 167177.
    18. 18)
      • 18. Chen, H., Chen, Y., Yang, Z., et al: ‘Extended ambiguity function for bistatic MIMO radar’, J. Syst. Eng. Electron., 2012, 23, (2), pp. 195200.
    19. 19)
      • 19. Li, J., Stoica, P.: ‘MIMO radar signal processing’ (John Wiley & Sons, 2009).
    20. 20)
      • 20. He, Q., Blum, R.S., Haimovich, A.M.: ‘Noncoherent MIMO radar for location and velocity estimation: more antennas means better performance’, IEEE Trans. Signal Process., 2010, 58, (7), pp. 36613680.
    21. 21)
      • 21. Radmard, M., Chitgarha, M.M., Nazari Majd, M., et al: ‘Ambiguity function of MIMO radar withwidely separated antennas’. Int. Radar Symp. (IRS), 2014, pp. 15.
    22. 22)
      • 22. Derham, T., Doughty, S., Baker, C., et al: ‘Ambiguity functions for spatially coherent and incoherent multistatic radar’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (1), pp. 230245.
    23. 23)
      • 23. Skolnik, M.I.: ‘Introduction to radar’ (McGraw-Hill, 2001).
    24. 24)
      • 24. Haimovich, A.M., Blum, R.S., Cimini, L.J.: ‘MIMO radar with widely separated antennas’, IEEE Signal Process. Mag., 2008, 25, (1), pp. 116129.
    25. 25)
      • 25. Tse, D., Viswanath, P.: ‘Fundamentals of wireless communication’ (Cambridge University Press, 2005).
    26. 26)
      • 26. Stoica, P., Moses, R.L.: ‘Spectral analysis of signals’ (Pearson/Prentice-Hall, Upper Saddle River, NJ, 2005).
    27. 27)
      • 27. Radmard, M., Chitgarha, M.M., Nazari Majd, M., et al: ‘Antenna placement and power allocation optimization in MIMO detection’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (2), pp. 14681478.
    28. 28)
      • 28. Petersen, K.B., Pedersen, M.S.: ‘The matrix cookbook’, vol. 7 (Technical University of Denmark, 2008), p. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0719
Loading

Related content

content/journals/10.1049/iet-spr.2016.0719
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address