http://iet.metastore.ingenta.com
1887

Mainlobe maintenance using shrinkage estimator method

Mainlobe maintenance using shrinkage estimator method

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A mainlobe maintenance method based on shrinkage estimator is presented here to promote the adaptive digital beamforming performance when there exists mainlobe jamming (MLJ). First, block matrix preprocessing (BMP) method is applied to suppress the MLJ. Then, the linear combination of estimated covariance matrix and identity matrix is optimised to generate more accurate estimation of the covariance matrix. After that, the improved covariance matrix is utilised to generate the adaptive weights to suppress the sidelobe jamming. Finally, the simulation shows that the proposed method is capable of eliminating peak offset of mainlobe and high sidelobes introduced by BMP and provides robustness against finite data samples effects. Accordingly, it outperforms noise whitening with error compensation, diagonal loading, and robust covariance matrix reconstruction in output SINR.

References

    1. 1)
      • 1. Cox, H., Zeskind, R.M., Owen, M.M.: ‘Robust adaptive beamforming’, IEEE Trans. Acoust. Speech Signal Process., 2005, 35, (10), pp. 13651376.
    2. 2)
      • 2. Applebaum, S.P., Wasiewicz, R.: ‘Main beam jammer cancellation for monopulse sensors’. Final Technical Report, DTIC RADC-TR-86-267, 1984.
    3. 3)
      • 3. Yu, K.B., Murrow, D.J.: ‘Adaptive digital beamforming radar for monopulse angle estimation in jamming’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (2), pp. 508523.
    4. 4)
      • 4. Zhou, B.L., Li, R.F., Dai, L.Y., et al: ‘Combining sum-difference and auxiliary beam adaptive monopulse algorithm at subarray level for anti-jamming’. Proc. Int. Conf. Signal Processing, 2015, pp. 277282.
    5. 5)
      • 5. Somasundaram, S.D., Jakobsson, A.: ‘Degradation of covariance reconstruction-based robust adaptive beamformers’, IET Radar Signal Process., 2002, 139, (6), pp. 378384.
    6. 6)
      • 6. Lu, L.J., Liao, Y.P.: ‘Improved algorithm of mainlobe interference suppression based on eigen-subspace’. IEEE Int. Conf. on Communication and Signal Processing, India, April 2016, pp. 01330137.
    7. 7)
      • 7. Li, R.F., Wang, Y.L., Wan, S.H.: ‘Research of reshaping adapted pattern under mainlobe interference conditions’, Mod. Rad., 2002, 5, (3), pp. 5053.
    8. 8)
      • 8. Li, R.F., Wang, Y.L., Wan, S.H.: ‘Robust adaptive beam forming under mainlobe interference conditions’, Syst. Eng. Electron., 2002, 24, (7), pp. 47.
    9. 9)
      • 9. Su, B.W., Wang, Y.L., Zhou, L.Z.: ‘A mainlobe interference cancelling method’. IEEE Int. Symp. Microwave Antenna Propagation and EMC Technologies for Wireless Communications Proc., Beijing, China, August 2005, pp. 2326.
    10. 10)
      • 10. Wan, S., Chung, P.J., Mulgrew, B.: ‘Maximum likelihood array calibration using particle swarm optimisation’, IET Signal Process., 2012, 6, (5), pp. 456465.
    11. 11)
      • 11. Zhuang, J., Manikas, A.: ‘Interference cancellation beamforming robust to pointing errors’, IET Signal Process., 2013, 7, (2), pp. 120127.
    12. 12)
      • 12. Ledoit, O., Wolf, M.: ‘A well-conditioned estimator for large-dimensional covariance matrices’, J. Multivar. Anal., 2004, 88, (2), pp. 365411.
    13. 13)
      • 13. Stoica, P., Li, J., Zhu, X., et al: ‘On using a priori knowledge in space-time adaptive processing’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 25982602.
    14. 14)
      • 14. ‘CVX Research: ‘Matlab software for disciplined convex programming, version 2.1’. Available at http://cvxr.com/cvx, accessed March 2015.
    15. 15)
      • 15. Widrow, B., Duvall, K., Gooch, R., et al: ‘Signal cancellation phenomena in adaptive antennas: causes and cures’, IEEE Trans. Antennas Propag., 1982, 30, (3), pp. 469478.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0691
Loading

Related content

content/journals/10.1049/iet-spr.2016.0691
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address