© The Institution of Engineering and Technology
In this study, a simple but effective spoofing detection method using a global positioning system (GPS) directional antenna is proposed which exploits the difference between the estimated directionofarrival (DOA) and the measured DOA from a GPS almanac and ephemeris data. The receiving signal's DOA is estimated by using a single antenna power measurementbased complex extended Kalman filter (EKF) which is a complex valued state space based estimation technique. Furthermore, an adaptive logic is applied to the complex EKF to reduce the effect of the measurement disturbance. To maintain the validity of the proposed algorithm, it is assumed that the spoofer is aware of the target's location, but that its DOA is not perfectly the same as that of the authentic GPS signal. In addition, the orientation of the directional antenna is known by using an attitude and heading reference system that is attached to the antenna, and its antenna radiation pattern is also known. The proposed detection method is evaluated using a theoretical analysis and simulations. It is finally confirmed that the proposed algorithm can detect a spoofing signal according to the different direction angles of the spoofing signal, and especially those with low DOAs.
References


1)

1. Broumandan, A., JafarniaJahromi, A., Dehghanian, V., et al: ‘GNSS spoofing detection in handheld receivers based on signal spatial correlation’. IEEE/ION PLANS, April 2012, pp. 479–487.

2)

2. Psiaki, M., Powell, S.P., O'Hanlon, B.W.: ‘GNSS spoofing detection using highfrequency antenna motion and carrierphase data’. ION GNSS+Meeting 2013, pp. 2949–2991.

3)

3. Montgomery, P.Y., Humphreys, T.E., Ledvina, B. M.: ‘A multiantenna defense: receiverautonomous GPS spoofing detection’, Inside GNSS, 2009, 4, (2), pp. 40–46.

4)

4. Meurer, M., Konovaltsev, A., Cuntz, M., et al: ‘Robust joint multiantenna spoofing detection and attitude estimation using direction assisted multiple hypotheses RAIM’. ION GNSS 2012, Nashville, TN, September 2012, pp. 3007–3016.

5)

5. Yu, M. J.: ‘INS/GPS integration system using adaptive filter for estimating measurement noise variance’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (2), pp. 1786–1792.

6)

6. Choukroun, D., BarItzhack, I.Y., Oshman, Y.: ‘Novel quaternion Kalman filter’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 174–190.

7)

7. Lie, J.P., Blu, T., See, C. M. S.: ‘Single antenna power measurements based direction finding’, IEEE Trans. Signal Process., 2010, 58, (11), pp. 5682–5692.

8)

8. Nishiyama, K.: ‘A nonlinear filter for estimating a sinusoidal signal and its parameters in white noise: on the case of a single sinusoid’, IEEE Trans. Signal Process., 1997, 45, (4), pp. 970–981.

9)

9. Dash, P.K., Pradhan, A.K., Panda, G.: ‘Frequency estimation of distorted power system signals using extended complex Kalman filter’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 761–766.

10)

10. Dini, D.H., Mandic, D.P., Julier, S. J.: ‘A widely linear complex unscented Kalman filter’, IEEE Trans. Signal Process. Lett., 2011, 18, (11), pp. 623–626.

11)

11. Mandic D.P. Goh, V.S.L.: ‘Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural models’ (John Wiley & Sons, 2009).

12)

12. Doron, M., Doron, E.: ‘Wavefield modeling and array processing. I. spatial sampling’, IEEE Trans. Signal Process., 1994, 42, (10), pp. 2549–2559.

13)

13. Doron, M., Doron, E.: ‘Wavefield modeling and array processing. II. Algorithms’, IEEE Trans. Signal Process., 1994, 42, (10), pp. 2560–2570.

14)

14. Joseph, A.: ‘GNSS solutions: measuring GNSS signal strength’, Inside GNSSEng. Solut. Glob. Navig. Satell. Syst. Community, 2010, 5, (8), pp. 20–25.

15)

15. Dini, D.H., Jahanchahi, C., Mandic, D.P.: ‘Kalman filtering for widely linear complex and quaternion valued bearings only tracking’, IET Signal Process., 2012, 6, (5), pp. 435–445.

16)

16. Dash, P.K., Hasan, S., Panigrahi, B. K.: ‘Adaptive complex unscented Kalman filter for frequency estimation of timevarying signals’, IET Sci. Meas. Technol., 2010, 4, (2), pp. 93–103.

17)

17. Hartikainen, J., Solin, A., Särkkä, S.: ‘Optimal filtering with Kalman filters and smoothers’ (Aalto University, 2011).

18)

18. Roth, M., Gustafsson, F.: ‘An efficient implementation of the second order extended Kalman filter’. Proc. 14th Int. Conf. on Information Fusion (FUSION), Chicago, U.S.A, July 2011, pp. 1–6.

19)

19. Reif, K., Günther, S., Yaz, E., et al: ‘Stochastic stability of the discretetime extended Kalman filter’, IEEE Trans. Autom. Control, 1999, 44, (4), pp. 714–728.

20)

20. Yu, M.J., Lee, J.G., Park, C. G.: ‘Nonlinear robust observer design for strapdown INS inflight alignment’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (3), pp. 797–807.

21)

21. Kaplan, E.D., Hegarty, C.: ‘Understanding GPS: principles and applications’ (Artech House, 2005).

22)

22. Yates, R.D., Goodman, D.J.: ‘Probability and stochastic processes. A friendly intro for electrical & computer engineers’ (John Wiley & Sons, Inc., 2004).

23)

23. Yang, J.H., Kang, C.H., Kim, S.Y., et al: ‘Intentional GNSS interference detection and characterization algorithm using AGC and adaptive IIR notch filter’, Int. J. Aeronaut. Space Sci., 2012, 13, (4), pp. 491–498.

24)

24. Borre, K., Akos, D.M., Bertelsen, N., et al: ‘A softwaredefined GPS and Galileo receiver: a singlefrequency approach’ (Springer, 2007).

25)

25. Bradford, P.W., Spilker, J., Enge, P.: ‘Global positioning system: theory and applications’ (AIAA, 1996), pp. 517–546.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2016.0646
Related content
content/journals/10.1049/ietspr.2016.0646
pub_keyword,iet_inspecKeyword,pub_concept
6
6