access icon free Tetra-stage cluster identification model to analyse the seismic activities of Japan, Himalaya and Taiwan

From the decades, due to the independent and Poisson nature of background seismicity, they are extensively used for hazard analysis, modelling of prediction phenomenon and also used for earthquake simulations. In this study, a tetra-stage cluster identification model is proposed for accurate estimation of background seismicity and triggered seismicity. The proposed method considers a seismic event's occurrence time, location, magnitude and depth information available in the given catalogue to classify the event as a background or aftershock. The model has flexible threshold parameters which can be tuned to a proper value according to the specific seismic zone to be analysed. It exploits the current seismic activities of the region by taking care the past samples of the region over last 25 years. The analyses of Japan, Himalaya and Taiwan catalogues are carried out using the proposed model. Superior results with the proposed model are achieved, compared with benchmark models by Nanda et al., Gardner–Knopoff and Uhrhammer et al. in terms of percentage of background seismicity, lambda plot and cumulative plot. The ergodicity present in the original seismic catalogue and catalogue after de-clustering are compared using Thirumalai-Mountain metric to justify the stationary and linearity.

Inspec keywords: seismology; geophysical signal processing

Other keywords: seismic activities; cumulative plot; hazard analysis; tetra-stage cluster identification model; background seismicity; lambda plot

Subjects: Digital signal processing; Geophysics computing; Geography and cartography computing; Geophysical techniques and equipment; Data and information; acquisition, processing, storage and dissemination in geophysics; Signal processing and detection

References

    1. 1)
      • 28. Xu, R., Wunsch, D.: ‘Survey of clustering algorithms’, IEEE Trans. Neural Netw., 2005, 16, (3), pp. 645678.
    2. 2)
      • 20. Nanda, S.J., Pradhan, P.M., Panda, G., et al: ‘A correlation based stochastic partitional algorithm for accurate cluster analysis’, Int. J. Signal Imaging Syst. Eng., 2013, 6, (1), pp. 5258.
    3. 3)
      • 7. Ogata, Y., Zhuang, J.: ‘Space–time ETAS models and an improved extension’, Tectonophysics, 2006, 413, (1), pp. 1323.
    4. 4)
      • 31. Tiampo, K.F., Rundle, J.B., Klein, W., et al: ‘Ergodicity in natural earthquake fault networks’, Phys. Rev. E, 2007, 75, (066107), pp. 115.
    5. 5)
      • 32. MapSeis Software Package’: Available at Corssa website.
    6. 6)
      • 33. Van Stiphout, T., Zhuang, J., Marsan, D.: ‘Seismicity declustering’, Commun. Online Resour. Stat. Seismicity Anal., 2012, doi: 10.5078/corssa-52382934.
    7. 7)
      • 19. Zaliapin, I., Gabrielov, A., Keilis-Borok, V., et al: ‘Clustering analysis of seismicity and aftershock identification’, Phys. Rev. Lett., 2008, 101, (1), p. 018501.
    8. 8)
      • 24. Frohlich, C.: ‘Aftershocks and temporal clustering of deep earthquakes’, J. Geophys. Res., 1987, 92, pp. 1394413956.
    9. 9)
      • 15. Marsan, D., Lengliné, O.: ‘A new estimation of the decay of aftershock density with distance to the mainshock’, J. Geophys. Res., Solid Earth, 2010, 115, (B9).
    10. 10)
      • 11. Gardner, J.K., Knopoff, L.: ‘Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian’, Bull. Seismol. Soc. Am., 1974, 54, (5), pp. 13631367.
    11. 11)
      • 21. Georgoulas, G., Konstantaras, A., Katsifarakis, E., et al: ‘Seimic-mass density based algorithm for spatio-temporal clustering’, Expert Syst. Appl., 2013, 40, (10), pp. 41834189.
    12. 12)
      • 13. Zhuang, J., Ogata, Y., Vere-Jones, D.: ‘Stochastic declustering of space–time earthquake occurrences’, J. Am. Stat. Assoc., 2002, 97, (458), pp. 369380.
    13. 13)
      • 5. Reasenberg, P.A., Jones, L.M.: ‘Earthquake aftershocks: update’, Science, 1994, 265, (5176), pp. 12511252.
    14. 14)
      • 9. Matthews, M.V., Ellsworth, W.L., Reasenberg, P.A.: ‘A Brownian model for recurrent earthquakes’, Bull. Seismol. Soc. Am., 2002, 92, (6), pp. 22332250.
    15. 15)
      • 30. Thirumalai, D., Mountain, R.D.: ‘Activated dynamics, loss of ergodicity, and transport in supercooled liquids’, Phys. Rev. A, 1993, 47, (1), pp. 479489.
    16. 16)
      • 14. Marsan, D., Lengline, O.: ‘Extending earthquakes reach through cascading’, Science, 2008, 319, (5866), pp. 10761079.
    17. 17)
      • 26. NCEDC’: http://ncedc.org/anss/catalog-search, accessed 16 February 2015.
    18. 18)
      • 3. Utsu, T.: ‘A statistical study on the occurrence of aftershocks’, Geophys. Mag., 1961, 38, (4), pp. 521605.
    19. 19)
      • 17. Bottiglieri, M., Lippiello, E., Godano, C., et al: ‘Identification and spatiotemporal organization of aftershocks’, J. Geophys. Res., Solid Earth (1978–2012), 2009, 114, (B3).
    20. 20)
      • 4. Reasenberg, P.A., Jones, L.M.: ‘Earthquake hazard after a mainshock in california’, Science, 1989, 243, (4895), pp. 11731176.
    21. 21)
      • 12. Reasenberg, P.: ‘Second-order moment of central California seismicity, 1969–1982’, J. Geophys. Res., Solid Earth (1978–2012), 2013, 90, (B7), pp. 54795495.
    22. 22)
      • 27. Jain, A.K.: ‘Data clustering: 50 years beyond K-means’, Pattern Recognit. Lett., 2010, 31, (8), pp. 651666.
    23. 23)
      • 18. Baiesi, M., Paczuski, M.: ‘Scale-free networks of earthquakes and aftershocks’, Phys. Rev. E, 2004, 69, (6), p. 066106.
    24. 24)
      • 16. Hainzl, S., Scherbaum, F., Beauval, C.: ‘Estimating background activity based on interevent-time distribution’, Bull. Seismol. Soc. Am., 2006, 96, (1), pp. 313320.
    25. 25)
      • 6. Touti, S., Naylor, M., Main, I.G.: ‘Origin and nonuniversality of the earthquake inter-event time distribution’, Phys. Rev. Lett., 2009, 102, (16), pp. 168501168505.
    26. 26)
      • 25. Wyss, M., Toya, Y.: ‘Is background seismicity produced at a stationary poissonian rate’, Bull. Seismol. Soc. Am., 2000, 90, (5), pp. 11741187.
    27. 27)
      • 2. Utsu, T., Ogata, Y., Matsu'ura, R.S.: ‘The centenary of the Omori formula for a decay law of aftershock activity’, J. Phys. Earth, 1995, 43, (1), pp. 133.
    28. 28)
      • 8. Bansal, A.R., Ogata, Y.: ‘Seismicity activation before the mega-earthquake of 26 December 2004 based on epidemic type aftershock sequence (ETAS) model’. AGU Fall Meeting Abstracts, December 2010, vol. 20, p. B2084.
    29. 29)
      • 23. Frohlich, C., Davis, S.: ‘Identification of aftershocks of deep earthquakes by a new ratios method’, Geophys. Res. Lett., 1985, 12, (10), pp. 713716.
    30. 30)
      • 29. Nanda, S.J., Tiampo, K.F., Panda, G., et al: ‘A tri-stage cluster identification model for accurate analysis of seismic catalogs’, Nonlinear Processes Geophys., 2013, 20, (145), pp. 143162.
    31. 31)
      • 10. Shcherbakov, R., Turcotte, D.L., Rundle, J.B.: ‘Aftershock statistics’, Pure Appl. Geophys., 2005, 162, pp. 10511076.
    32. 32)
      • 22. Uhrhammer, R.: ‘Characteristics of northern and southern California seismicity’, Earthq. Notes, 1986, 57, (1), p. 21.
    33. 33)
      • 1. Omori, F.: ‘On the aftershocks of earthquakes’, J. Coll. Sci., Univ. Tokyo, 1894, 7, pp. 111200.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0639
Loading

Related content

content/journals/10.1049/iet-spr.2016.0639
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading