http://iet.metastore.ingenta.com
1887

Tetra-stage cluster identification model to analyse the seismic activities of Japan, Himalaya and Taiwan

Tetra-stage cluster identification model to analyse the seismic activities of Japan, Himalaya and Taiwan

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

From the decades, due to the independent and Poisson nature of background seismicity, they are extensively used for hazard analysis, modelling of prediction phenomenon and also used for earthquake simulations. In this study, a tetra-stage cluster identification model is proposed for accurate estimation of background seismicity and triggered seismicity. The proposed method considers a seismic event's occurrence time, location, magnitude and depth information available in the given catalogue to classify the event as a background or aftershock. The model has flexible threshold parameters which can be tuned to a proper value according to the specific seismic zone to be analysed. It exploits the current seismic activities of the region by taking care the past samples of the region over last 25 years. The analyses of Japan, Himalaya and Taiwan catalogues are carried out using the proposed model. Superior results with the proposed model are achieved, compared with benchmark models by Nanda et al., Gardner–Knopoff and Uhrhammer et al. in terms of percentage of background seismicity, lambda plot and cumulative plot. The ergodicity present in the original seismic catalogue and catalogue after de-clustering are compared using Thirumalai-Mountain metric to justify the stationary and linearity.

References

    1. 1)
      • 1. Omori, F.: ‘On the aftershocks of earthquakes’, J. Coll. Sci., Univ. Tokyo, 1894, 7, pp. 111200.
    2. 2)
      • 2. Utsu, T., Ogata, Y., Matsu'ura, R.S.: ‘The centenary of the Omori formula for a decay law of aftershock activity’, J. Phys. Earth, 1995, 43, (1), pp. 133.
    3. 3)
      • 3. Utsu, T.: ‘A statistical study on the occurrence of aftershocks’, Geophys. Mag., 1961, 38, (4), pp. 521605.
    4. 4)
      • 4. Reasenberg, P.A., Jones, L.M.: ‘Earthquake hazard after a mainshock in california’, Science, 1989, 243, (4895), pp. 11731176.
    5. 5)
      • 5. Reasenberg, P.A., Jones, L.M.: ‘Earthquake aftershocks: update’, Science, 1994, 265, (5176), pp. 12511252.
    6. 6)
      • 6. Touti, S., Naylor, M., Main, I.G.: ‘Origin and nonuniversality of the earthquake inter-event time distribution’, Phys. Rev. Lett., 2009, 102, (16), pp. 168501168505.
    7. 7)
      • 7. Ogata, Y., Zhuang, J.: ‘Space–time ETAS models and an improved extension’, Tectonophysics, 2006, 413, (1), pp. 1323.
    8. 8)
      • 8. Bansal, A.R., Ogata, Y.: ‘Seismicity activation before the mega-earthquake of 26 December 2004 based on epidemic type aftershock sequence (ETAS) model’. AGU Fall Meeting Abstracts, December 2010, vol. 20, p. B2084.
    9. 9)
      • 9. Matthews, M.V., Ellsworth, W.L., Reasenberg, P.A.: ‘A Brownian model for recurrent earthquakes’, Bull. Seismol. Soc. Am., 2002, 92, (6), pp. 22332250.
    10. 10)
      • 10. Shcherbakov, R., Turcotte, D.L., Rundle, J.B.: ‘Aftershock statistics’, Pure Appl. Geophys., 2005, 162, pp. 10511076.
    11. 11)
      • 11. Gardner, J.K., Knopoff, L.: ‘Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian’, Bull. Seismol. Soc. Am., 1974, 54, (5), pp. 13631367.
    12. 12)
      • 12. Reasenberg, P.: ‘Second-order moment of central California seismicity, 1969–1982’, J. Geophys. Res., Solid Earth (1978–2012), 2013, 90, (B7), pp. 54795495.
    13. 13)
      • 13. Zhuang, J., Ogata, Y., Vere-Jones, D.: ‘Stochastic declustering of space–time earthquake occurrences’, J. Am. Stat. Assoc., 2002, 97, (458), pp. 369380.
    14. 14)
      • 14. Marsan, D., Lengline, O.: ‘Extending earthquakes reach through cascading’, Science, 2008, 319, (5866), pp. 10761079.
    15. 15)
      • 15. Marsan, D., Lengliné, O.: ‘A new estimation of the decay of aftershock density with distance to the mainshock’, J. Geophys. Res., Solid Earth, 2010, 115, (B9).
    16. 16)
      • 16. Hainzl, S., Scherbaum, F., Beauval, C.: ‘Estimating background activity based on interevent-time distribution’, Bull. Seismol. Soc. Am., 2006, 96, (1), pp. 313320.
    17. 17)
      • 17. Bottiglieri, M., Lippiello, E., Godano, C., et al: ‘Identification and spatiotemporal organization of aftershocks’, J. Geophys. Res., Solid Earth (1978–2012), 2009, 114, (B3).
    18. 18)
      • 18. Baiesi, M., Paczuski, M.: ‘Scale-free networks of earthquakes and aftershocks’, Phys. Rev. E, 2004, 69, (6), p. 066106.
    19. 19)
      • 19. Zaliapin, I., Gabrielov, A., Keilis-Borok, V., et al: ‘Clustering analysis of seismicity and aftershock identification’, Phys. Rev. Lett., 2008, 101, (1), p. 018501.
    20. 20)
      • 20. Nanda, S.J., Pradhan, P.M., Panda, G., et al: ‘A correlation based stochastic partitional algorithm for accurate cluster analysis’, Int. J. Signal Imaging Syst. Eng., 2013, 6, (1), pp. 5258.
    21. 21)
      • 21. Georgoulas, G., Konstantaras, A., Katsifarakis, E., et al: ‘Seimic-mass density based algorithm for spatio-temporal clustering’, Expert Syst. Appl., 2013, 40, (10), pp. 41834189.
    22. 22)
      • 22. Uhrhammer, R.: ‘Characteristics of northern and southern California seismicity’, Earthq. Notes, 1986, 57, (1), p. 21.
    23. 23)
      • 23. Frohlich, C., Davis, S.: ‘Identification of aftershocks of deep earthquakes by a new ratios method’, Geophys. Res. Lett., 1985, 12, (10), pp. 713716.
    24. 24)
      • 24. Frohlich, C.: ‘Aftershocks and temporal clustering of deep earthquakes’, J. Geophys. Res., 1987, 92, pp. 1394413956.
    25. 25)
      • 25. Wyss, M., Toya, Y.: ‘Is background seismicity produced at a stationary poissonian rate’, Bull. Seismol. Soc. Am., 2000, 90, (5), pp. 11741187.
    26. 26)
      • 26. NCEDC’: http://ncedc.org/anss/catalog-search, accessed 16 February 2015.
    27. 27)
      • 27. Jain, A.K.: ‘Data clustering: 50 years beyond K-means’, Pattern Recognit. Lett., 2010, 31, (8), pp. 651666.
    28. 28)
      • 28. Xu, R., Wunsch, D.: ‘Survey of clustering algorithms’, IEEE Trans. Neural Netw., 2005, 16, (3), pp. 645678.
    29. 29)
      • 29. Nanda, S.J., Tiampo, K.F., Panda, G., et al: ‘A tri-stage cluster identification model for accurate analysis of seismic catalogs’, Nonlinear Processes Geophys., 2013, 20, (145), pp. 143162.
    30. 30)
      • 30. Thirumalai, D., Mountain, R.D.: ‘Activated dynamics, loss of ergodicity, and transport in supercooled liquids’, Phys. Rev. A, 1993, 47, (1), pp. 479489.
    31. 31)
      • 31. Tiampo, K.F., Rundle, J.B., Klein, W., et al: ‘Ergodicity in natural earthquake fault networks’, Phys. Rev. E, 2007, 75, (066107), pp. 115.
    32. 32)
      • 32. MapSeis Software Package’: Available at Corssa website.
    33. 33)
      • 33. Van Stiphout, T., Zhuang, J., Marsan, D.: ‘Seismicity declustering’, Commun. Online Resour. Stat. Seismicity Anal., 2012, doi: 10.5078/corssa-52382934.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0639
Loading

Related content

content/journals/10.1049/iet-spr.2016.0639
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address