http://iet.metastore.ingenta.com
1887

Learning using privileged information for HRRP-based radar target recognition

Learning using privileged information for HRRP-based radar target recognition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel machine learning method named extended support vector data description with negative examples (ESVDD-neg) is developed to classify the fast Fourier transform-magnitude feature of complex high-resolution range profile (HRRP), motivated by the problem of radar automatic target recognition. The proposed method not only inherits the close non-linear boundary advantage of support vector data description with negative examples model but also incorporates a new learning paradigm named learning using privileged information into the model. It leads to the appealing application with no assumptions regarding the distribution of data and needs less training samples and prior information. Besides, the second order central moment is selected as privileged information for better recognition performance, weakening the effect of translation sensitivity, and the normalisation contributes to eliminating the amplitude sensitivity. Hence, there will be a remarkable improvement of recognition accuracy not only with small training dataset but also under the condition of low signal-to-noise ratio. Numerical experiments based on two publicly UCI datasets and HRRPs of four aircrafts demonstrate the feasibility and superiority of the proposed method. The noise robust ESVDD-neg is ideal for HRRP-based radar target recognition.

References

    1. 1)
      • 1. Du, L., Liu, H., Wang, P., et al: ‘Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size’, IEEE Trans. Signal Process., 2012, 60, (7), pp. 35463559.
    2. 2)
      • 2. Li, Y., Zhang, L., Liu, B., et al: ‘Stepped-frequency inverse synthetic aperture radar imaging based on adjacent pulse correlation integration and coherent processing’, IET Signal Process., 2011, 5, (7), pp. 632642.
    3. 3)
      • 3. Zhai, S., Jiang, T.: ‘Sparse representation-based feature extraction combined with support vector machine for sense-through-foliage target detection and recognition’, IET Signal Process., 2014, 8, (5), pp. 458466.
    4. 4)
      • 4. Shi, L., Wang, P., Liu, H., et al: ‘Radar HRRP statistical recognition with local factor analysis by automatic Bayesian ying-Yang harmony learning’, IEEE Trans. Signal Process., 2011, 59, (2), pp. 610617.
    5. 5)
      • 5. Du, L., He, H., Zhao, L., et al: ‘Noise robust radar HRRP target recognition based on scatterer matching algorithm’, IEEE Sens. J., 2016, 16, (6), pp. 17431753.
    6. 6)
      • 6. Pan, M., Du, L., Wang, P., et al: ‘Noise-robust modification method for Gaussian-based models with application to radar HRRP recognition’, IEEE Geosci. Remote Sensing, 2013, 10, (3), pp. 558562.
    7. 7)
      • 7. Liu, J., Fang, N., Xie, Y.J., et al: ‘Multi-scale feature-based fuzzy-support vector machine classification using radar range profiles’, IET Radar Sonar Navig., 2016, 10, (2), pp. 370378.
    8. 8)
      • 8. Guo, S.M., Chen, L.C., Tsai, J.S.H.: ‘A boundary method for outlier detection based on support vector domain description’, Pattern Recognit., 2009, 42, (1), pp. 7783.
    9. 9)
      • 9. Chen, G., Zhang, X., Wang, Z.J., et al: ‘Robust support vector data description for outlier detection with noise or uncertain data’, Knowl.-Based Syst., 2015, 90, pp. 129137.
    10. 10)
      • 10. Liu, Y., Liu, Y., Chen, Y.: ‘Fast support vector data descriptions for novelty detection’, IEEE Trans. Neural Netw., 2010, 21, (8), pp. 12961313.
    11. 11)
      • 11. Cao, J., Zhang, L., Wang, B., et al: ‘A fast gene selection method for multi-cancer classification using multiple support vector data description’, J. Biomed. Inf., 2015, 53, pp. 381389.
    12. 12)
      • 12. Lei, L., Xiao-Dan, W., Xi, L., et al: ‘Hierarchical error-correcting output codes based on SVDD’, Pattern Anal. Appl., 2016, 19, pp. 163171.
    13. 13)
      • 13. Jo, Q.H., Chang, J.H., Shin, J.W., et al: ‘Statistical model-based voice activity detection using support vector machine’, IET Signal Process., 2008, 3, pp. 205210.
    14. 14)
      • 14. Tax, D.M.J., Duin, R.P.W.: ‘Support vector domain description’, Pattern Recognit. Lett., 1999, 20, pp. 11911199.
    15. 15)
      • 15. Tax, D.M.J., Duin, R.P.W.: ‘Support vector data description’, Mach. Learn., 2004, 54, pp. 4566.
    16. 16)
      • 16. Wang, Z., Zhao, Z., Weng, S., et al: ‘Solving one-class problem with outlier examples by SVM’, Neurocomputing, 2015, 149, pp. 100105.
    17. 17)
      • 17. Huang, G., Chen, H., Zhou, Z., et al: ‘Two-class support vector data description’, Pattern Recognit., 2011, 44, (2), pp. 320329.
    18. 18)
      • 18. Forghani, Y., Sadoghi Yazdi, H., Effati, S.: ‘An extension to fuzzy support vector data description (FSVDD*)’, Pattern Anal. Appl., 2012, 15, (3), pp. 237247.
    19. 19)
      • 19. Cha, M., Kim, J.S., Baek, J.: ‘Density weighted support vector data description’, Expert Syst. Appl., 2014, 41, (7), pp. 33433350.
    20. 20)
      • 20. Vapnik, V., Vashist, A.: ‘A new learning paradigm: learning using privileged information’, Neural Netw., 2009, 22, (5-6), pp. 544557.
    21. 21)
      • 21. Lapin, M., Heinb, M., Schiele, B.: ‘Learning using privileged information: SVM+ and weighted SVM’, Neural Netw., 2014, 53, pp. 95108.
    22. 22)
      • 22. Vapnik, V., Izmailov, R.: ‘Learning using privileged information: similarity control and knowledge transfer’, J. Mach. Learn. Res., 2015, 16, pp. 20232049.
    23. 23)
      • 23. Wang, S., Zhu, Y., Yue, L., et al: ‘Emotion recognition with the help of privileged information’, IEEE Trans. Auton. Ment. Dev., 2015, 7, (3), pp. 189200.
    24. 24)
      • 24. Feyereisl, J., Aickelin, U.: ‘Privileged information for data clustering’, Inf. Sci., 2012, 194, pp. 423.
    25. 25)
      • 25. Zhang, W.: ‘Support vector data description using privileged information’, Electron. Lett., 2015, 51, (14), pp. 10751076.
    26. 26)
      • 26. Cui, M., Prasad, S.: ‘Sparse representation-based classification: orthogonal least squares or orthogonal matching pursuit ?’, Pattern Recognit. Lett., 2016, 84, pp. 120126.
    27. 27)
      • 27. Shrivastava, A., Patel, V.M., Chelappa, R.: ‘Multiple kernel learning for sparse representation-based classification’, IEEE Trans. Image Process., 2014, 23, (7), pp. 30133024.
    28. 28)
      • 28. Mu, T., Nandi, A.K.: ‘Multiclass classification based on extended support vector data description’, IEEE Trans. Syst. Man Cybern. B, 2009, 39, (5), pp. 12061216.
    29. 29)
      • 29. Tomar, D., Agarwal, S.: ‘A comparison on multi-class classification methods based on least squares twin support vector machine’, Knowl.-Based Syst., 2015, 81, pp. 131147.
    30. 30)
      • 30. Manikandan, J., Venkataramani, B.: ‘Evaluation of multiclass support vector machine classifiers using optimum threshold-based pruning technique’, IET Signal Process., 2011, 5, pp. 506513.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0625
Loading

Related content

content/journals/10.1049/iet-spr.2016.0625
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address