Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Feature selection based on MBFOA for audio signal classification under consideration of Gaussian white noise

Audio classification is a difficult task because of the issue of extracting and choosing the optimum audio features. To reduce the computational complication from existing methods, this study proposes a feature-selection method based on modified bacterial foraging optimisation algorithm (MBFOA) for classification of audio signals. Enhanced mel-frequency cepstral coefficient and enhanced power normalised cepstral coefficients with peak and pitch are estimated the signal feature and optimised using MBFOA with the fitness function. Using the probabilistic neural network, the audio signal is classified into music and speech signal. Then, if the signal is music, the signal is classified as cello, clarinet, flute etc. If the signal is detected as a speech, then it is again classified as male or female voice. This approach shows that it is possible to boost the classification accuracy by using different features and optimisation technique.

References

    1. 1)
      • 20. Dhanalakshmi, P., Palanivel, S., Ramalingam, V.: ‘Classification of audio using AANN and GMM’, Appl. Soft Comput., 2011, 11, pp. 716723.
    2. 2)
      • 9. Nanni, L., Casta, M.G., Lumini, A., et al: ‘Combining visual and acoustic features for music genre classification’, Expert Syst. Appl., 2015, 45, pp. 108117.
    3. 3)
      • 1. Passino, K.M.: ‘Biomimicry of bacterial foraging for distributed optimization and control’, IEEE Control Syst. Mag., 2002, 22, (3), pp. 5267.
    4. 4)
      • 14. Muthumari, A., Mala, K.: ‘An efficient approach for segmentation, feature extraction and classification of audio signals’, Circuits Syst., 2016, 7, pp. 255279.
    5. 5)
      • 3. Qian, K., Xu, Z., Xu, H., et al: ‘Automatic detection, segmentation and classification of snore related signals from overnight audio recording’, IET Signal Process., 2015, 9, pp. 2129.
    6. 6)
      • 16. Ibrahiem, M.M., Emary, E., Ramakrishnan, R.: ‘On the application of various probabilistic neural networks in solving different pattern classification problems’, World Appl. Sci. J., 2008, 4, (6), pp. 772780.
    7. 7)
      • 21. Huang, Y.F., Lin, S.M., Wu, H.Y., et al: ‘Music genre classification based on local feature selection using a self-adaptive harmony search algorithm’, Data Knowl. Eng., 2014, 92, pp. 6076.
    8. 8)
      • 6. Bae, C., Wahid, N., Chung, Y.Y., et al: ‘Effective audio classification algorithm using swarm-based optimization’, Int. J. Innov. Comput. Inf. Control, 2014, 10, (1), pp. 151167.
    9. 9)
      • 25. Fonseca, E.S., Guido, R.C., Scalassara, P.R., et al: ‘Wavelet time–frequency analysis and least square support vector machines for the identification of voice disorders’, Comput. Biol. Med., 2007, 37, (4), pp. 571578.
    10. 10)
      • 5. Xie, L., Fu, Z.H., Feng, W., et al: ‘Pitch-density-based features and an SVM binary tree approach for multi-class audio classification in broadcast news’, Multimedia Syst., 2011, 17, pp. 101112.
    11. 11)
      • 17. ‘marsyasweb’. Available at http://marsyasweb.appspot.com/download/data_sets/, accessed 21 August 2015.
    12. 12)
      • 8. Degara, N., Rua, E.A., Pena, A., et al: ‘Reliability-informed beat tracking of musical signals’, IEEE Trans. Audio Speech Lang. Process., 2012, 20, pp. 290301.
    13. 13)
      • 18. ‘ffuhrmann’. Available at http://www.dtic.upf.edu/~ffuhrmann/PhD/data/, accessed 21 August 2015.
    14. 14)
      • 23. Kos, M., Kacic, Z., Vlaj, D.: ‘Acoustic classification and segmentation using modified spectral roll-off and variance based features’, Digit. Signal Process., 2013, 23, (2), pp. 659674.
    15. 15)
      • 2. Zahid, R.: ‘Optimized audio classification and segmentation algorithm by using ensemble methods’, Math. Probl. Eng., 2015, 2015, pp. 112.
    16. 16)
      • 11. Divya, A., Latha, M.: ‘An efficient greedy technique based unsupervised feature selection for breast cancer gene expression data clustering’, Int. J. Multidiscip. Res. Dev., 2016, 3, (3), pp. 123126.
    17. 17)
      • 4. Kos, M., Kacic, Z., Vlaj, D.: ‘Acoustic classification and segmentation using modified spectral roll-off and variance-based features’, Digit. Signal Process., 2013, 23, pp. 659674.
    18. 18)
      • 7. Ai, O.C., Hariharan, M., Yaacob, S., et al: ‘Classification of speech dysfluencies with MFCC and LPCC features’, Expert Syst. Appl., 2012, 39, pp. 21572165.
    19. 19)
      • 24. Lu, L., Zhang, H.J., Li, S.Z.: ‘Content-based audio classification and segmentation by using support vector machines’, Multimedia Syst., 2003, 8, (6), pp. 482492.
    20. 20)
      • 15. Dasgupta, S., Das, S., Abraham, A., et al: ‘Adaptive computational chemotaxis in bacteria foraging optimization: an analysis’, IEEE Trans. Evol. Comput., 2009, 13, (4), pp. 919941.
    21. 21)
      • 22. Dhanalakshmi, P., Palanivel, S., Ramalingam, V.: ‘Classification of audio signals using SVM and RBFNN’, Expert Syst. Appl., 2009, 36, pp. 60696075.
    22. 22)
      • 10. Yongqiang, B., Ji, X., Haiyan, X.: ‘Practical speech emotion recognition based on Im-BFOA’, J. Appl. Sci., 2013, 13, (22), pp. 53495355.
    23. 23)
      • 19. Aksehirli, O., Aydin, D., Ankarali, H., et al: ‘Knee osteoarthritis diagnosis using support vector machine and probabilistic neural network’, Int. J. Comput. Sci., 2013, 10, pp. 283291.
    24. 24)
      • 13. Tang, K., Lib, Z., Wu, J., et al: ‘Multilevel thresholding approach using modified bacterial foraging optimization’, J. Comput., 2014, 9, (12), pp. 27712779.
    25. 25)
      • 12. Sathya, P.D., Kayalvizhi, R.: ‘Modified bacterial foraging algorithm based multilevel thresholding for image segmentation’, Eng. Appl. Artif. Intell., 2011, 24, pp. 595615.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0607
Loading

Related content

content/journals/10.1049/iet-spr.2016.0607
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address