access icon free Analysis of partial diffusion recursive least squares adaptation over noisy links

Partial diffusion-based recursive least squares (PDRLS) is an effective way of lowering computational load and power consumption in adaptive network implementation. In this method, every single node distributes a fraction of its intermediate vector estimate with its immediate neighbours at each iteration. In this study, the authors examine the steady-state performance of PDRLS algorithm in the presence of noisy links by means of an energy conservation argument. They consider the mean-square-deviation (MSD) as the performance metric in the steady-state and derive a theoretical expression for PDRLS algorithm with noisy links. The authors’ analysis reveals that unlike the established statements on PDRLS scheme under ideal links, the trade-off between MSD performance and the number of selected entries of the intermediate estimate vectors, as a sign of communication cost, is mitigated. They further examine the convergence behaviour of the PDRLS algorithm. The obtained results show that under certain statistical assumptions for the measurement data and noise signals, under noisy links the PDRLS algorithm is stable in both mean and mean-square senses. Finally, they present some simulation results to verify the theoretical findings.

Inspec keywords: least squares approximations; telecommunication power management; power consumption; radio links

Other keywords: statistical assumptions; adaptive network implementation; noisy links; PDRLS; energy conservation argument; mean-square-deviation; power consumption; intermediate vector estimate; MSD; partial diffusion-based recursive least squares

Subjects: Radio links and equipment; Interpolation and function approximation (numerical analysis); Telecommunication systems (energy utilisation); Numerical approximation and analysis

References

    1. 1)
      • 4. Bertrand, A., Moonen, M.: ‘Consensus-based distributed total least squares estimation in ad hoc wireless sensor networks’, IEEE Trans. Signal Process., 2011, 59, (5), pp. 23202330.
    2. 2)
      • 31. Khalili, A., Tinati, M.A., Rastegarnia, A.: ‘Analysis of incremental RLS adaptive networks with noisy links’, IEICE Electron. Express, 2011, 8, (9), pp. 623628.
    3. 3)
      • 42. Yousef, N.R., Sayed, A.H.: ‘A unified approach to the steady-state and tracking analyses of adaptive filters’, IEEE Trans. Signal Process., 2001, 49, (2), pp. 314324.
    4. 4)
      • 27. Khalili, A., Tinati, M.A., Rastegarnia, A., et al: ‘Steady-state analysis of diffusion LMS adaptive networks with noisy links’, Signal Processing, IEEE Transactions on, 2012, 60, (2), pp. 974979.
    5. 5)
      • 30. Khalili, A., Tinati, M.A., Rastegarnia, A.: ‘Steady-state analysis of incremental LMS adaptive networks with noisy links’, IEEE Trans. Signal Process., 2011, 59, (5), pp. 24162421.
    6. 6)
      • 34. Sayed, A.H.: ‘Adaptive filters’ (John Wiley & Sons, 2011).
    7. 7)
      • 39. Treichler, J.R., Johnson, C.R., Larimore, M.G.: ‘Theory and design of adaptive filters’ (Wiley, 1987).
    8. 8)
      • 33. Mateos, G., Schizas, I.D., Giannakis, G.B.: ‘Performance analysis of the consensus-based distributed LMS algorithm’, EURASIP J. Adv. Signal Process., 2009, 2009, p. 68.
    9. 9)
      • 11. Chouvardas, S., Slavakis, K., Theodoridis, S.: ‘Adaptive robust distributed learning in diffusion sensor networks’, IEEE Trans. Signal Process., 2011, 59, (10), pp. 46924707.
    10. 10)
      • 8. Saeed, M.O.B., Zerguine, A., Zunmo, S.A.: ‘A variable step-size strategy for distributed estimation over adaptive networks’, EURASIP J. Adv. Signal Process., 2013, 27, (10), pp. 827845, October 2013..
    11. 11)
      • 10. Bertrand, A., Moonen, M., Sayed, A.H.: ‘Diffusion bias-compensated RLS estimation over adaptive networks’, IEEE Trans. Signal Process., 2011, 59, (11), pp. 52125224.
    12. 12)
      • 41. Sayed, A.H.: ‘Fundamentals of adaptive filtering’ (John Wiley & Sons, 2003).
    13. 13)
      • 36. Dogancay, K.: ‘Partial-update adaptive signal processing: design analysis and implementation’ (Academic Press, 2008).
    14. 14)
      • 20. Arablouei, R., Werner, S., Huang, Y.-F., et al: ‘Distributed least mean-square estimation with partial diffusion’, IEEE Trans. Signal Process., 2014, 62, (2), pp. 472484.
    15. 15)
      • 14. Tu, S.-Y., Sayed, A.H.: ‘Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks’, IEEE Trans. Signal Process., 2012, 60, (12), pp. 62176234.
    16. 16)
      • 6. Mateos, G., Schizas, I.D., Giannakis, G.B.: ‘Distributed recursive least-squares for consensus-based in-network adaptive estimation’, IEEE Trans. Signal Process., 2009, 57, (11), pp. 45834588.
    17. 17)
      • 9. Saeed, M.O.B., Zerguine, A., Zummo, S.A.: ‘A noise-constrained algorithm for estimation over distributed networks’, Int. J. Adapt. Control Signal Process., 2013, 27, (10), pp. 827845.
    18. 18)
      • 5. Stanković, S.S., Stanković, M.S., Stipanović, D.M.: ‘Decentralized parameter estimation by consensus based stochastic approximation’, IEEE Trans. Autom. Control, 2011, 56, (3), pp. 531543.
    19. 19)
      • 26. Khalili, A., Tinati, M.A., Rastegarnia, A., et al: ‘Transient analysis of diffusion least-mean squares adaptive networks with noisy channels’, Int. J. Adapt. Control Signal Process., 2012, 26, (2), pp. 171180.
    20. 20)
      • 37. Godavarti, M., Hero III, A.O.: ‘Partial update LMS algorithms’, IEEE Trans. Signal Process., 2005, 53, (7), pp. 23822399.
    21. 21)
      • 22. Sayin, M.O., Kozat, S.S.: ‘Single bit and reduced dimension diffusion strategies over distributed networks’, IEEE Signal Process. Lett., 2013, 20, (10), pp. 976979.
    22. 22)
      • 21. Arablouei, R., Dogancay, K., Werner, S., et al: ‘Adaptive distributed estimation based on recursive least-squares and partial diffusion’, IEEE Trans. Signal Process., 2014, 62, (14), pp. 35103522.
    23. 23)
      • 18. Takahashi, N., Yamada, I.: ‘Link probability control for probabilistic diffusion least-mean squares over resource-constrained networks’. 2010 IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP), 2010, pp. 35183521.
    24. 24)
      • 23. Sayin, M.O., Kozat, S.S.: ‘Compressive diffusion strategies over distributed networks for reduced communication load’, IEEE Trans. Signal Process., 2014, 62, (20), pp. 53085323.
    25. 25)
      • 1. Lopes, C.G., Sayed, A.H.: ‘Incremental adaptive strategies over distributed networks’, IEEE Trans. Signal Process., 2007, 55, (8), pp. 40644077.
    26. 26)
      • 16. Rørtveit, Ø.L., Husøy, J.H., Sayed, A.H.: ‘Diffusion LMS with communication constraints’. 2010 Conf. Record of the Forty Fourth Asilomar Conf. on Signals, Systems and Computers (ASILOMAR), 2010, pp. 16451649.
    27. 27)
      • 2. Rabbat, M.G., Nowak, R.D.: ‘Quantized incremental algorithms for distributed optimization’, IEEE J. Sel. Areas Commun., 2005, 23, (4), pp. 798808.
    28. 28)
      • 19. Zhao, X., Sayed, A.H.: ‘Single-link diffusion strategies over adaptive networks’. 2012 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 37493752.
    29. 29)
      • 24. Chouvardas, S., Slavakis, K., Theodoridis, S.: ‘Trading off complexity with communication costs in distributed adaptive learning via Krylov subspaces for dimensionality reduction’, IEEE J. Sel. Top. Signal Process., 2013, 7, (2), pp. 257273.
    30. 30)
      • 12. Cattivelli, F.S., Sayed, A.H.: ‘Diffusion LMS strategies for distributed estimation’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 10351048.
    31. 31)
      • 43. Zhao, X., Tu, S.-Y., Sayed, A.H.: ‘Diffusion adaptation over networks under imperfect information exchange and non-stationary data’, IEEE Trans. Signal Process., 2012, 60, (7), pp. 34603475.
    32. 32)
      • 35. Meyer, C.D.: ‘Matrix analysis and applied linear algebra’ (Siam, 2000), vol. 2.
    33. 33)
      • 3. Nedic, A., Bertsekas, D.P.: ‘Incremental subgradient methods for nondifferentiable optimization’, SIAM J. Optim., 2001, 12, (1), pp. 109138.
    34. 34)
      • 25. Abdolee, R., Champagne, B.: ‘Diffusion LMS algorithms for sensor networks over non-ideal inter-sensor wireless channels’. 2011 Int. Conf. on Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011, pp. 16.
    35. 35)
      • 29. Khalili, A., Tinati, M.A., Rastegarnia, A.: ‘Performance analysis of distributed incremental LMS algorithm with noisy links’, Int. J. Distrib. Sens. Netw., 2011, 59, (5), pp. 24162421.
    36. 36)
      • 40. Al-Naffouri, T.Y., Sayed, A.H.: ‘Transient analysis of data-normalized adaptive filters’, IEEE Trans. Signal Process., 2003, 51, (3), pp. 639652.
    37. 37)
      • 32. Kar, S., Moura, J.M.F.: ‘Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise’, IEEE Trans. Signal Process., 2009, 57, (1), pp. 355369.
    38. 38)
      • 38. Douglas, S.C.: ‘Adaptive filters employing partial updates’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 1997, 44, (3), pp. 209216.
    39. 39)
      • 17. Lopes, C.G., Sayed, A.H.: ‘Diffusion adaptive networks with changing topologies’. 2008 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2008.
    40. 40)
      • 15. Cattivelli, F.S., Lopes, C.G., Sayed, A.H.: ‘Diffusion recursive least-squares for distributed estimation over adaptive networks’, IEEE Trans. Signal Process., 2008, 56, (5), pp. 18651877.
    41. 41)
      • 13. Lopes, C.G., Sayed, A.H.: ‘Diffusion least-mean squares over adaptive networks: formulation and performance analysis’, IEEE Trans. Signal Process., 2008, 56, (7), pp. 31223136.
    42. 42)
      • 28. Tu, S.-Y., Sayed, A.H.: ‘Adaptive networks with noisy links’. 2011 Global Telecommunications Conf. (GLOBECOM 2011), 2011, pp. 15.
    43. 43)
      • 7. Chen, J., Sayed, A.H.: ‘Diffusion adaptation strategies for distributed optimization and learning over networks’, IEEE Trans. Signal Process., 2012, 60, (8), pp. 42894305.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0544
Loading

Related content

content/journals/10.1049/iet-spr.2016.0544
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading