access icon free Impulse noise detection technique based on fuzzy set

In this study, a new fuzzy-based technique is introduced for denoising images corrupted by impulse noise. The proposed method is based on the intuitionistic fuzzy set (IFS), in which the degree of hesitation plays an important role. The degree of hesitation of the pixels is obtained from the values of memberships of the object and the background of the image. After minimising the obtained hesitation function, the IFS is constructed and the noisy pixels are detected outside the neighbourhood of mean intensity of the object and the background of an image. Denoised images are relatively analysed with five other methods: modified decision-based unsymmetric trimmed median filter, noise adaptive fuzzy switched median filter, adaptive fuzzy switching weighted average filter, adaptive weighted mean filter, iterative alpha trimmed mean filter. Performances of the proposed method along with these five state-of the-art methods are evaluated using a peak signal-to-noise ratio and error rate along with the time for computation. Experimentally, derived denoising method showed an improved performance than five other existing techniques in filtering noise in images due to the reduction of uncertainty while choosing the noisy pixels.

Inspec keywords: fuzzy set theory; image denoising; iterative methods; image filtering; adaptive filters; impulse noise

Other keywords: fuzzy-based technique; intuitionistic fuzzy set; hesitation function; image denoising; modified decision-based unsymmetric trimmed median filter; impulse noise detection technique; adaptive weighted mean filter; adaptive fuzzy switching weighted average filter; IFS; iterative alpha trimmed mean filter; noise adaptive fuzzy switched median filter; signal-to-noise ratio

Subjects: Interpolation and function approximation (numerical analysis); Combinatorial mathematics; Computer vision and image processing techniques; Optical, image and video signal processing; Interpolation and function approximation (numerical analysis); Combinatorial mathematics

References

    1. 1)
      • 13. Wang, Z., Zhang, D.: ‘Progressive switching median filter for the removal of impulse noise from highly corrupted images’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 1999, 46, pp. 7880.
    2. 2)
      • 32. Azimirad, E., Haddadnia, J.: ‘Design of a new filtering for the noise removing in images by fuzzy logic’, J. Intel. Fuzzy Syst., 2015, 28, (4), pp. 18691876.
    3. 3)
      • 20. Yan, R., Shao, L., Liu, L., et al: ‘Natural image denoising using evolved local adaptive filters’, Signal Process., 2014, 103, pp. 3644.
    4. 4)
      • 3. Wu, J., Tang, C.: ‘Random-valued impulse noise removal using fuzzy weighted non-local means’, Signal Image Video Process., 2015, 8, (2), pp. 349355.
    5. 5)
      • 22. Jain, P., Tyagi, V.: ‘LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising’, Inf. Sci., 2015, 294, (10), pp. 164181.
    6. 6)
      • 19. He, N., Wang, J.B., Zhang, L.L., et al: ‘An improved fractional-order differentiation model for image denoising’, Signal Process., 2015, 112, pp. 180188.
    7. 7)
      • 17. Lu, L., Jin, W., Wang, X.: ‘Non-local means image denoising with a soft threshold’, IEEE Signal Process. Lett., 2014, 22, (7), pp. 833837.
    8. 8)
      • 29. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
    9. 9)
      • 26. Zadeh, L.A.: ‘Fuzzy sets’, Inf. Control, 1965, 8, pp. 338353.
    10. 10)
      • 18. Lia, X., Hea, H., Wangb, R., et al: ‘Superpixel-guided nonlocal means for image denoising and super-resolution’, Signal Process., 2016, 124, pp. 173183.
    11. 11)
      • 23. Pham, C.C., Jeon, J.W.: ‘Efficient image sharpening and denoising using adaptive guided image filtering’, IET Image Process., 2015, 9, (1), pp. 7179.
    12. 12)
      • 24. Sulaiman, S.N., Isa, N.A.M., Yusoff, I.A., et al: ‘Switching-based clustering algorithms for segmentation of low-level salt-and-pepper noise corrupted images’, Signal Image Video Process., 2015, 9, (2), pp. 387398.
    13. 13)
      • 10. Zhang, S., Karim, M.A.: ‘A new impulse detector for switching median filters’, IEEE Signal Process. Lett., 2002, 9, (11), pp. 360363.
    14. 14)
      • 31. Melo-Pinto, P., Couto, P., Bustince, H., et al: ‘Image segmentation using Atanassov's intuitionistic fuzzy sets’, Expert Syst. Appl., 2013, 40, (1), pp. 1526.
    15. 15)
      • 6. Kayhan, S.K.: ‘An effective 2-stage method for removing impulse noise in images’, J. Vis. Commun. Image R, 2014, 25, (2), pp. 478486.
    16. 16)
      • 14. Ng, P., Ma, K.: ‘A switching median filter with boundary discriminative noise for extremely corrupted images’, IEEE Trans. Image Process., 2006, 15, (6), pp. 15061516.
    17. 17)
      • 21. Zuo, Z., Hu, J., Lan, X., et al: ‘Content-based adaptive image denoising using spatial information’, Optik-Int. J. Light Electron Opt., 2014, 125, (18), pp. 50935101.
    18. 18)
      • 5. Ahmed, F., Das, S.: ‘Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean’, IEEE Trans. Fuzzy Syst., 2014, 22, (5), pp. 13521358.
    19. 19)
      • 30. Ananthi, V.P., Balasubramaniam, P., Lim, C.P.: ‘Segmentation of gray scale image based on intuitionistic fuzzy sets constructed from several membership - functions’, Pattern Recognit., 2014, 47, pp. 38703880.
    20. 20)
      • 4. Zhang, P., Li, F.: ‘‘A new adaptive weighted mean filter for removing salt-and-pepper noise’, IEEE Signal Process. Lett., 2014, 21, (10), pp. 12801283.
    21. 21)
      • 27. Atanassov, K.T.: ‘Intuitionistic fuzzy sets’, Fuzzy Sets Syst.., 1986, 20, (1), pp. 8796.
    22. 22)
      • 25. Xu, L., Li, J., Shu, Y., et al: ‘SAR image denoising via clustering-based principal component analysis’, IEEE Trans. Geosci. Remote Sens. J., 2014, 52, (11), pp. 68586869.
    23. 23)
      • 1. Teuber, T., Remmele, S., Hesser, J., et al: ‘Denoising by second order statistics’, Signal Process.., 2012, 92, (12), pp. 28372847.
    24. 24)
      • 15. Toh, K.K.V., Isa, N.A.M.: ‘Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction’, IEEE Signal Process. Lett., 2010, 17, (3), pp. 281284.
    25. 25)
      • 16. Esakkirajan, S., Veerakumar, T., Subramanyam, A.N., et al: ‘Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter’, IEEE Signal Process. Lett., 2011, 18, (5), pp. 287290.
    26. 26)
      • 28. Pilevar, A.H., Saien, S., Khandel, M., et al: ‘A new filter to remove salt and pepper noise in color images’, Signal Image Video Process., 2015, 9, (4), pp. 779786.
    27. 27)
      • 12. Varghese, J., Ghouse, M., Subash, S., et al: ‘Efficient adaptive fuzzy-based switching weighted average filter for the restoration of impulse corrupted digital images’, IET Image Process., 2014, 8, (4), pp. 199206.
    28. 28)
      • 9. Chen, T., Ma, K.K., Chen, L.H.: ‘Tri-state median filter for image denoising’, IEEE Trans. Image Process., 1999, 8, pp. 18341838.
    29. 29)
      • 2. Bhadouria, V.S., Ghoshal, D.: ‘A study on genetic expression programming-based approach for impulse noise reduction in images’, Signal Image Video Process., 2016, 10, (3), pp. 575584.
    30. 30)
      • 8. Lin, H.M., Willson, A.N.Jr.: ‘Median filters with adaptive length’, IEEE Trans. Circuits Syst., 1988, 35, pp. 675690.
    31. 31)
      • 7. Yang, R., Yin, L., Gabbouj, M., et al: ‘Optimal weighted median filtering under structural constraints’, IEEE Trans. Signal Process., 1995, 43, (3), pp. 591604.
    32. 32)
      • 11. Chen, T., Hong, R.W.: ‘Adaptive impulse detection using center-weighted median filters’, IEEE Signal Process. Lett., 2001, 8, (1), pp. 13.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0538
Loading

Related content

content/journals/10.1049/iet-spr.2016.0538
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading