http://iet.metastore.ingenta.com
1887

Fast recovery of weak signal based on three-dimensional curvelet transform and generalised cross validation

Fast recovery of weak signal based on three-dimensional curvelet transform and generalised cross validation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In order to recover weak signal that is submerged in heavy background noise, a weak signal recovery method based on three-dimensional curvelet transform and generalised cross validation (GCV) is presented. Their method includes three stages: firstly, three-dimensional dataset was decomposed into sub-volumes by three-dimensional curvelet transform, and then Graphics Processing Unit (GPU) is used to improve the speed of parallel processing of sub-volumes. Secondly, the GCV criterion and genetic algorithm were used to improve the signal-to-noise ratio (SNR) of the processed signal. Finally, according to different distribution between the effective signal energy and the noise energy, adaptive filter is used to enhance the recovered weak signal. Furthermore, to verify the availability of the method, a wedge of simulation data and 100 groups of three-dimensional seismic data for testing are analysed, the stratigraphic structure information is much clearer in the processed seismic data than in the original data. The results show that the SNR of the recovered data is improved by 3 dB and the band of frequency is increased by 100 Hz. Their method is four to five times faster than a recovery method based on CPU processing.

References

    1. 1)
      • 1. Wang, S., Chen, X., Wang, Y., et al: ‘Nonlinear squeezing time-frequency transform for weak signal detection’, Signal Process., 2015, 113, pp. 195210.
    2. 2)
      • 2. Han, D., li, P., An, S., et al: ‘Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance’, Mech. Syst. Signal Process., 2016, 70–71, (61), pp. 9951010.
    3. 3)
      • 3. Wang, S., Zhu, Z., He, Y., et al: ‘Adaptive parameter identification based on Morlet wavelet and application in gearbox fault feature detection’, EURASIPJ Adv. Signal Process, 2010, 2010, (1), pp. 842879.
    4. 4)
      • 4. Feng, Z., Liang, M., Chu, F.: ‘Recent advances in time-frequency analysis methods for machinery fault diagnosis: are view with application examples’, Mech. Syst. Signal Process., 2013, 38, (1), pp. 165205.
    5. 5)
      • 5. Cai, G., Chen, X., He, Z.: ‘Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox’, Mech. Syst. Signal Process., 2013, 41, (2), pp. 3453.
    6. 6)
      • 6. He, Q.: ‘Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis’, Mech. Syst. Signal Process., 2013, 35, (2), pp. 200218.
    7. 7)
      • 7. Djukanovic, S., Dakovic, M., Stankovic, L.: ‘Local polynomial Fourier transform receiver for nonstationary interference excision in DSSS communications’, IEEE Trans. Signal Process., 2008, 56, (4), pp. 16271636.
    8. 8)
      • 8. Stankovic, L., Dakovic, M., Thayaparan, T.: ‘Time-frequency signal analysis with applications’. IEEE Int. Conf. Acoustics, Speech, & Signal Processing, Boston, USA, February 2013, pp. 421424.
    9. 9)
      • 9. Qian, S., Chen, D.: ‘Joint time-frequency analysis’, IEEE Signal Process. Mag., 2002, 16, (2), pp. 5267.
    10. 10)
      • 10. Liu, G., Fomel, S., Chen, X.: ‘Time-frequency analysis of seismic data using local attributes’, Geophysics, 2011, 76, (6), pp. 2334.
    11. 11)
      • 11. Park, C., Looney, D., Kidmose, P., et al: ‘Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition’, IEEE Trans. Neural Syst. Rehabil. Eng., 2011, 19, (4), pp. 366373.
    12. 12)
      • 12. Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., et al: ‘Signal processing techniques applied to human sleep EEG signals-a review’, Biomed. Signal Process. Control, 2014, 10, (2), pp. 2133.
    13. 13)
      • 13. Zhao, X., Ye, B.: ‘Singular value decomposition packet and its application to extraction of weak fault feature’, Mech. Syst. Signal Process., 2016, 70–71, (4), pp. 7386.
    14. 14)
      • 14. Galiana-Merino, J.J., Rosa-Herranz, J.L., Rosa-Cintas, S., et al: ‘Seismicwavetool: continuous and discrete wavelet analysis and filtering for multichannel seismic data’, Comput. Phys. Commun., 2013, 184, (1), pp. 162171.
    15. 15)
      • 15. Cand'es, E.J., Laurent, D.L., David, D., et al: ‘Fast discrete curvelet transforms’, Multiscale Model. Simulat., 2006, 5, (3), pp. 861899.
    16. 16)
      • 16. Han, D., li, P., An, S., et al: ‘Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance’, Mech. Syst. Signal Process., 2016, 70, (1), pp. 9951010.
    17. 17)
      • 17. Zhao, D., Luo, M.: ‘A novel weak signal detection method for linear frequency modulation signal based on bistable system and fractional Fourier transform’, Int. J. Light Electron Opt., 2016, 127, (10), pp. 44054412.
    18. 18)
      • 18. Yan, J., Lu, L.: ‘Improved Hilbert-Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis’, Signal Process., 2014, 98, (1), pp. 7487.
    19. 19)
      • 19. Golestani, A., Mahdi, S., Kolbadi, S., et al: ‘Localization and de-noising seismic signals on SASW measurement by wavelet transform’, J. Appl. Geophys., 2013, 98, (98), pp. 124133.
    20. 20)
      • 20. Zhao, Y., Liu, Y., Li, X., et al: ‘Time-frequency domain SNR estimation and its application in seismic data processing’, J. Appl. Geophys., 2014, 107, (4), pp. 2535.
    21. 21)
      • 21. Bao, Q.Z., Li, Q.C., Chen, W.C.: ‘GPR data noise attenuation on the curvelet transform’, Appl. Geophys., 2014, 11, (3), pp. 301310.
    22. 22)
      • 22. Cieszczyk, S., Lawicki, T., Miaskowski, A.: ‘The curvelet transform application to the analysis of data received from GPR technique’, Elektron. Elektrotech., 2013, 19, (6), pp. 99102.
    23. 23)
      • 23. Tzanis, A.: ‘The curvelet transform in the analysis of 2-D GPR data: signal enhancement and extraction of orientation-and-scale-dependent information’, J. Appl. Geophys., 2015, 115, (2C), pp. 145170.
    24. 24)
      • 24. Tzanis, A.: ‘A versatile tuneable curvelet-like directional filter with application to fracture detection in two-dimensional GPR data’, Signal Process., 2017, 132, pp. 243260.
    25. 25)
      • 25. Warden, S., Garambois, S., Sailhac, P., et al: ‘Curvelet-based seismoelectric data processing’, Geophys. J. Int., 2012, 190, (3), pp. 15331550.
    26. 26)
      • 26. Górszczyk, A., Adamczyk, A., Malinowski, M.: ‘Application of curvelet denoising to 2D and 3D seismic data – practical considerations’, J. Appl. Geophys., 2014, 105, (2), pp. 7894.
    27. 27)
      • 27. Woiselle, A., Starck, J.-L., Fadili, J.: ‘3D curvelet transforms and astronomical data restoration’, Appl. Comput. Harmon. Anal., 2010, 28, (2), pp. 171188.
    28. 28)
      • 28. Feng, F., Wang, D.-L., Zhu, H., et al: ‘Estimating primaries by sparse inversion of the 3D curvelet transform and the L1-norm constraint’, Appl. Geophys., 2013, 10, (2), pp. 201209.
    29. 29)
      • 29. Jansen, M., Malfait, M., Bultheel, A.: ‘Generalized cross validation for wavelet thresholding’, Signal Process., 1997, 56, (1), pp. 3344.
    30. 30)
      • 30. Zhang, L., Chen, J., Zhu, T.: ‘Image denoising based on iterative generalized cross-validation and fast translation invariant’, J. Vis. Commun. Image Represent., 2015, 28, (1), pp. 114.
    31. 31)
      • 31. Jansen, M.: ‘Generalized cross validation in variable selection with and without shrinkage’, J. Stat. Plan. Inference, 2015, 159, (1), pp. 90104.
    32. 32)
      • 32. Gao, J., Zhou, Y., He, G., et al: ‘A multi-GPU parallel optimization model for the preconditioned conjugate gradient algorithm’, Parallel Comput., 2017, 63, (1), pp. 116.
    33. 33)
      • 33. Ortega, L., Rueda, A.: ‘Parallel drainage network computation on CUDA’, Comput. Geosci., 2010, 36, (2), pp. 171178.
    34. 34)
      • 34. Hawick, K.A., Leist, A., Playne, D.P.: ‘Parallel graph component labelling with GPUs and CUDA’, Parallel Comput., 2010, 36, (12), pp. 655678.
    35. 35)
      • 35. Ling, S.H., Leung, F.H., Lam, H.K.: ‘An improved genetic algorithm based fuzzy-tuned neural network’, Int. J. Neural Syst., 2005, 15, (6), pp. 457474.
    36. 36)
      • 36. Ringler, A.T., Hagerty, M.T., Holland, J., et al: ‘The data quality analyzer: a quality control program for seismic data’, Comput. Geosci., 2015, 76, (1), pp. 96111.
    37. 37)
      • 37. Liu, W., Cao, S., Li, G., et al: ‘Reconstruction of seismic data with missing traces based on local random sampling and curvelet’, J. Appl. Geophys., 2015, 115, (1), pp. 129139.
    38. 38)
      • 38. Xie, K., Bai, Z., Yu, W.: ‘Fast seismic data compression based on high-efficiency SPIHT’, Electron. Lett., 2014, 50, (5), pp. 365367.
    39. 39)
      • 39. Li, Q., Peng, S., Zou, G.: ‘High resolution processing of 3D seismic data for thin coal seam in guqiao coal mine’, J. Appl. Geophys., 2015, 115, (1), pp. 3239.
    40. 40)
      • 40. ‘Technical articles using Wavelet Toolbox’. Available at https://cn.mathworks.com/company/newsletters/articles/analyzing-array-based-comparative-genomic-hybridization-data.html, accessed 20 April 2016.
    41. 41)
      • 41. ‘Technical articles using CurveLab Toolbox’. Available at http://curvelet.org/gallery.html, accessed 25 April 2016.
    42. 42)
      • 42. Shi, Y., Jin, J.M.: ‘GPU-accelerated time-domain marching-on-in-degree solution’, Electron. Lett., 2013, 49, (6), pp. 393394.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0492
Loading

Related content

content/journals/10.1049/iet-spr.2016.0492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address