http://iet.metastore.ingenta.com
1887

Detection and RM correction approach for manoeuvring target with complex motions

Detection and RM correction approach for manoeuvring target with complex motions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the coherent accumulation problem for detecting a manoeuvring target with complex motions, where range migration (RM) [i.e. range walk (RW) and range curvature (RC)] and Doppler frequency migration (DFM) occur during the coherent integration time. An efficient approach based on generalised keystone transform (GKT), radon transform (RT) and generalised dechirp process (GDP), i.e. GKT-RT-GDP, is presented to eliminate the RM and realise the coherent accumulation. More specifically, the GKT operation is first employed to remove the RC. Then, the RT is applied to estimate the trajectory slope for RW correction and velocity estimation. After that, GDP is introduced to obtain the estimations of target's acceleration and acceleration rate motion. Thereafter, the DFM caused by target's high-order motions can be compensated and then the coherent integration can be realised via Fourier transform. The advantage of the presented algorithm is that it can obtain a good balance between the computation cost and the detection performance, in comparison with the existing coherent integration algorithms.

References

    1. 1)
      • 1. Zhu, S.Q., Liao, G.S., Yang, D., et al: ‘A new method for radar high-speed maneuvering weak target detection and imaging’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (7), pp. 11751179.
    2. 2)
      • 2. Wang, C., Wang, Y., Li, S.B.: ‘Inverse synthetic aperture radar imaging of ship targets with complex motion based on match Fourier transform for cubic chirps model’, IET Radar Sonar Navig., 2013, 7, (9), pp. 9941003.
    3. 3)
      • 3. Wang, Y., Zhao, B., Jiang, Y.C.: ‘Inverse synthetic aperture radar imaging of targets with complex motion based on cubic chirplet decomposition’, IET Signal Process., 2015, 9, (5), pp. 419429.
    4. 4)
      • 4. Wang, Y., Jiang, Y.C.: ‘Approach for high-resolution inverse synthetic aperture radar imaging of ship target with complex motion’, IET Signal Process., 2013, 7, (2), pp. 146157.
    5. 5)
      • 5. Wang, Y., Jiang, Y.C.: ‘Inverse synthetic aperture radar imaging of three-dimensional rotation target based on two-order match Fourier transform’, IET Signal Process., 2012, 6, (2), pp. 159169.
    6. 6)
      • 6. Li, X.L., Kong, L.J., Cui, G.L., et al: ‘ISAR imaging of maneuvering target with complex motions based on ACCF-LVD’, Digit. Signal Process., 2015, 46, pp. 191200.
    7. 7)
      • 7. Wu, L., Wei, X.Z., Yang, D.G., et al: ‘ISAR imaging of targets with complex motion based on discrete chirp Fourier transform for cubic chirps’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (10), pp. 42014212.
    8. 8)
      • 8. Wang, Y., Jiang, Y.C.: ‘Inverse synthetic aperture radar imaging of maneuvering target based on the product generalized cubic phase function’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (5), pp. 958962.
    9. 9)
      • 9. Li, Y.C., Xing, M.D., Quan, Y.H., et al: ‘A new algorithm of ISAR imaging for maneuvering targets with low SNR’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (1), pp. 543557.
    10. 10)
      • 10. Non, N., Hajduch, G., Khenchaf, A., et al: ‘Recent developments in detection, imaging and classification for airborne maritime surveillance’, IET Signal Process., 2008, 2, (3), pp. 192203.
    11. 11)
      • 11. Huang, P.H., Liao, G.S., Yang, Z.W., et al: ‘Approach for space-based radar manoeuvring target detection and high-order motion parameter estimation’, IET Radar Sonar Navig., 2015, 9, (6), pp. 732741.
    12. 12)
      • 12. Li, X.L., Cui, G.L., Kong, L.J., et al: ‘High speed maneuvering target detection based on joint keystone transform and CP function’. Proc. of 2014 IEEE Radar Conf., May 2014, pp. 04360440.
    13. 13)
      • 13. Tian, J., Cui, W., Wu, S.: ‘A novel method for parameter estimation of space moving targets’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (2), pp. 389393.
    14. 14)
      • 14. Xing, M.D., Su, J.H., Wang, G.Y., et al: ‘New parameter estimation and detection algorithm for high speed small target’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (1), pp. 214224.
    15. 15)
      • 15. Su, J., Xing, M., Wang, G., et al: ‘High-speed multi-target detection with narrowband radar’, IET Radar Sonar Navig., 2010, 4, (4), pp. 595603.
    16. 16)
      • 16. Li, X.L., Cui, G.L., Yi, W., et al: ‘A fast maneuvering target motion parameters estimation algorithm based on ACCF’, IEEE Signal Process. Lett., 2015, 22, (3), pp. 270274.
    17. 17)
      • 17. Li, Y.C., Zhang, L., Liu, B.C., et al: ‘Stepped-frequency inverse synthetic aperture radar imaging based on adjacent pulse correlation integration and coherent processing’, IET Signal Process., 2011, 5, (7), pp. 632642.
    18. 18)
      • 18. Tao, R., Zhang, N., Wang, Y.: ‘Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar’, IET Radar Sonar Navig., 2011, 5, (1), pp. 1222.
    19. 19)
      • 19. Yu, J., Xu, J., Peng, Y.N., et al: ‘Radon-Fourier transform (RFT) for radar target detection (III): optimality and fast implementations’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (2), pp. 9911004.
    20. 20)
      • 20. Pang, C., Tao, S., Tao, R., et al: ‘Detection of high-speed and accelerated target based on the linear frequency modulation radar’, IET Radar Sonar Navig., 2014, 8, (1), pp. 3747.
    21. 21)
      • 21. Li, X.L., Cui, G.L., Kong, L.J., et al: ‘Fast non-searching method for maneuvering target detection and motion parameters estimation’, IEEE Trans. Signal Process., 2016, 64, (9), pp. 22322244.
    22. 22)
      • 22. Perry, R.P., Dipietro, R.C., Fante, R.L.: ‘SAR imaging of moving targets’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (1), pp. 188200.
    23. 23)
      • 23. Li, X.L., Cui, G.L., Kong, L.J., et al: ‘Manoeuvring target detection based on keystone transform and Lv's distribution’, IET Radar Sonar Navig., 2016, 10, (7), pp. 12341242.
    24. 24)
      • 24. Zhu, D.Y., Li, Y., Zhu, Z.D.: ‘A keystone transform without interpolation for SAR ground moving-target imaging’, IEEE Geosci. Remote Sens. Lett., 2007, 4, (1), pp. 1822.
    25. 25)
      • 25. Li, G., Xia, X.G., Peng, Y.N.: ‘Doppler keystone transform: an approach suitable for parallel implementation of SAR moving target imaging’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (4), pp. 573577.
    26. 26)
      • 26. Yuan, S.J., Wu, T., Mao, M., et al: ‘Application research of keystone transform in weak high-speed target detection in low-PRF narrowband chirp radar’. Proc. of 2008 Ninth Int. Conf. on Signal Processing, Beijing, China, October 2008, pp. 24522456.
    27. 27)
      • 27. Xu, J., Yu, J., Peng, Y.N., et al: ‘Radon-Fourier transform (RFT) for radar target detection (I): generalized Doppler filter bank processing’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 11861202.
    28. 28)
      • 28. Rao, X., Tao, H.H., Su, J., et al: ‘Detection of constant radial acceleration weak target via IAR-FRFT’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (4), pp. 32423253.
    29. 29)
      • 29. Chen, X.L., Guan, J., Liu, N.B., et al: ‘Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration’, IEEE Trans. Signal Process., 2014, 62, (4), pp. 939953.
    30. 30)
      • 30. Chen, X.L., Guan, J., Liu, N.B., et al: ‘Detection of a low observable sea-surface target with micromotion via the radon-linear canonical transform’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (7), pp. 12251229.
    31. 31)
      • 31. Xu, J., Xia, X.G., Peng, S.B., et al: ‘Radar maneuvering target motion estimation based on generalized radon-Fourier transform’, IEEE Trans. Signal Process., 2012, 60, (12), pp. 61906201.
    32. 32)
      • 32. Xu, J., Yu, J., Peng, Y.N., et al: ‘Radon-Fourier transform (RFT) for radar target detection (II): blind speed sidelobe suppression’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (4), pp. 24732489.
    33. 33)
      • 33. Li, X.L., Cui, G.L., Yi, W., et al: ‘Range migration correction for maneuvering target based on generalized keystone transform’. Proc. of 2015 IEEE Radar Conf., May 2015, pp. 9599.
    34. 34)
      • 34. Li, X.L., Cui, G.L., Yi, W., et al: ‘Coherent integration for maneuvering target detection based on radon-Lv's distribution’, IEEE Signal Process. Lett., 2015, 22, (9), pp. 14671471.
    35. 35)
      • 35. Li, X.L., Kong, L.J., Cui, G.L., et al: ‘A low complexity coherent integration method for maneuvering target detection’, Digit. Signal Process., 2016, 49, pp. 137147.
    36. 36)
      • 36. Kong, L.J., Li, X.L., Cui, G.L., et al: ‘Coherent integration algorithm for a maneuvering target with high-order range migration’, IEEE Trans. Signal Process., 2015, 63, (17), pp. 44744486.
    37. 37)
      • 37. Jungang, Y., Xiaotao, H., Thompson, J., et al: ‘Low-frequency ultra-wideband synthetic aperture radar ground moving target imaging’, IET Radar Sonar Navig., 2011, 5, (9), pp. 9941001.
    38. 38)
      • 38. Kirkland, D.: ‘Imaging moving targets using the second-order keystone transform’, IET Radar Sonar Navig., 2011, 5, (8), pp. 902910.
    39. 39)
      • 39. Huang, P.H., Liao, G.S., Yang, Z.W., et al: ‘An approach for refocusing of ground fast-moving target and high-order motion parameter estimation using radon-high-order time-chirp rate transform’, Digit. Signal Process., 2016, 48, pp. 333348.
    40. 40)
      • 40. Carretero-Moya, J., Gismero-Menoyo, J., Asensio-López, A., et al: ‘Application of the radon transform to detect small-targets in sea clutter’, IET Radar Sonar Navig., 2009, 3, (2), pp. 155166.
    41. 41)
      • 41. Zhang, X.P., Liao, G.S., Zhu, S.Q., et al: ‘Geometry-information-aided efficient radial velocity estimation for moving target imaging and location based on radon transform’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (2), pp. 11051117.
    42. 42)
      • 42. Sharif, M.R., Abeysekera, S.S.: ‘Efficient wideband signal parameter estimation using a radon-ambiguity transform slice’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (2), pp. 673688.
    43. 43)
      • 43. Xu, R.P., Zhang, D.D., Hu, D.H., et al: ‘A novel motion parameter estimation algorithm of fast moving targets via single antenna airborne SAR system’, IEEE Geosci. Remote Sens. Lett., 2012, 9, (5), pp. 920924.
    44. 44)
      • 44. Wang, M.S., Chan, A.K., Chui, C.K.: ‘Linear frequency-modulated signal detection using radon-ambiguity transform’, IEEE Trans. Signal Process., 1998, 46, (3), pp. 571586.
    45. 45)
      • 45. Landmark, K., Solberg, A.S., Albregtsen, F., et al: ‘A radon transform-based image noise filter-with applications to multibeam bathymetry’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (11), pp. 62526273.
    46. 46)
      • 46. Li, W.P.: ‘Wigner distribution method equivalent to dechirp method for detecting a chirp signal’, IEEE Trans. Acoust. Speech Signal Process., 1987, 35, (8), pp. 12101211.
    47. 47)
      • 47. Guida, M., Longo, M., Lops, M.: ‘Biparametric CFAR procedures for lognormal clutter’, IEEE Trans. Aerosp. Electron. Syst., 1994, 29, (3), pp. 789809.
    48. 48)
      • 48. Chen, X.L., Guan, J., He, Y., et al: ‘Detection of low observable moving target in sea clutter via fractal characteristics in FRFT domain’, IET Radar Sonar Navig., 2013, 7, (6), pp. 635651.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0444
Loading

Related content

content/journals/10.1049/iet-spr.2016.0444
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address