© The Institution of Engineering and Technology
This study deals with the issue of designing the sensing matrix for a compressed sensing (CS) system assuming that the dictionary is given. Traditionally, the measurement of small mutual coherence is considered to design the optimal sensing matrix so that the Gram of the equivalent dictionary is as close to the target Gram as possible, where the equivalent dictionary is not normalised. In other words, these algorithms are designed to solve the CS problem using an optimisation stage followed by normalisation. To achieve a global solution, a novel strategy of the sensing matrix design is proposed by using a gradientbased method, in which the measure of real mutual coherence for the equivalent dictionary is considered. According to this approach, a minimised objective function based on alternating minimisation is also developed through searching the target Gram within a set of relaxed equiangular tight frames. Some experiments are done to compare the performance of the newly designed sensing matrix with the existing ones under the condition that the dictionary is fixed. For the simulations of synthetic data and real image, the proposed approach provides better signal reconstruction accuracy.
References


1)

1. Candès, E.J., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489–509.

2)

2. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 1289–1306.

3)

3. Candès, E.J., Tao, T.: ‘Near optimal signal recovery from random projection: universal encoding strategies?’, IEEE Trans. Inf. Theory, 2006, 52, (12), pp. 5406–5425.

4)

4. Candès, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 21–30.

5)

5. Tsaig, Y., Donoho, D.L.: ‘Extensions of compressed sensing’, Signal Process., 2006, 86, (3), pp. 549–571.

6)

6. Duarte, M.F., Eldar, Y.C.: ‘Structured compressed sensing: From theory to applications’, IEEE Trans. Signal Process., 2011, 59, (9), pp. 4053–4085.

7)

7. Rauhut, H., Schnass, K., Vandergheynst, P.: ‘Compressed sensing and redundant dictionaries’, IEEE Trans. Inf. Theory, 2008, 54, (5), pp. 2210–2219.

8)

8. Pudlewski, S., Melodia, T., Prasanna, A.: ‘Compressedsensingenabled video streaming for wireless multimedia sensor networks’, IEEE Trans. Mob. Comput., 2010, 11, (6), pp. 1060–1072.

9)

9. Sharma, S.K., Patwary, M., AbdelMaguid, M.: ‘Spectral efficient compressive transmission framework for wireless communication systems’, IET Signal Process., 2013, 7, (7), pp. 558–564.

10)

10. Montefusco, L.B., Lazzaro, D., Papi, S., et al: ‘A fast compressed sensing approach to 3D MR image reconstruction’, IEEE Trans. Med. Imaging, 2011, 30, (5), pp. 1064–1075.

11)

11. Liu, H., Song, B., Tian, F., et al: ‘Compressed sensing with partial support information: coherencebased performance guarantees and alternative direction method of multiplier reconstruction algorithm’, IET Signal Process., 2014, 8, (7), pp. 749–758.

12)

12. Donoho, D.L., Elad, M.: ‘Optimally sparse representation in general (nonorthonormal) dictionaries via ℓ1 minimization’, Proc. Nat. Acad. Sci., 2003, 100, (5), pp. 2197–2202.

13)

13. Pati, Y., Rezaifar, R., Krishnaprasad, P.: ‘Orthogonal matching pursuit: recursive function approximation with application to wavelet decomposition’. Proc. of the Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, 1993.

14)

14. Chen, S., Donoho, D.L., Saunders, M.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1998, 20, (1), pp. 33–61.

15)

15. Zibulevsky, M., Elad, M. : ‘ℓ1−ℓ2 optimization in signal and image processing’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 76–88.

16)

16. Gribonval, R., Nielsen, M.: ‘Sparse representations in unions of bases’, IEEE Trans. Inf. Theory, 2003, 49, (12), pp. 3320–3325.

17)

17. Elad, M.: ‘Optimized projections for compressed sensing’, IEEE Trans. Signal Process., 2007, 55, (12), pp. 5695–5702.

18)

18. Strohmer, T., Heath, R.W.: ‘Grassmannian frames with applications to coding and communication’, Appl. Comput. Harmon. Anal., 2003, 14, (3), pp. 257–275.

19)

19. DuarteCarvajalino, J.M., Sapiro, G.: ‘Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization’, IEEE Trans. Image Process., 2009, 18, (7), pp. 1395–1408.

20)

20. Li, G., Zhu, Z., Yang, D., et al: ‘On projection matrix optimization for compressive sensing systems’, IEEE Trans. Signal Process., 2013, 61, (11), pp. 2887–2898.

21)

21. Aharon, M., Elad, M., Bruckstein, A.: ‘The KSVD: an algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (12), pp. 4311–4322.

22)

22. Yaghoobi, M., Daudet, L., Davies, M.E.: ‘Parametric dictionary design for sparse coding’, IEEE Trans. Signal Process., 2009, 57, (12), pp. 4800–4810.

23)

23. Xu, J., Pi, Y., Cao, Z.: ‘Optimized projection matrix for compressive sensing’, EURASIP J. Adv. Signal Process., 2010, 43, pp. 1–8.

24)

24. Abolghasemi, V., Ferdowsi, S., Sanei, S.: ‘A gradientbased alternating minimization approach for optimization of the measurement matrix in compressive sensing’, Signal Process., 2012, 92, (4), pp. 999–1009.

25)

25. Abolghasemi, V., Ferdowsi, S., Makkiabadi, B., et al: ‘On optimization of the measurement matrix for compressive sensing’. Proc. Eur. Signal Processing Conf., Aalborg, Denmark, 2010.

26)

26. Tropp, J.A., Dhillon, I.S., Heath, R.W., et al: ‘Designing structured tight frames via an alternating projection method’, IEEE Trans. Inf. Theory, 2005, 51, (1), pp. 188–209.

27)

27. Dhillon, I.S., Heath, R.W.Jr., Strohmer, T., et al: ‘Constructing packings in Grassmannian manifolds via alternating projection’, Experim. Math., 2008, 17, (1), pp. 9–35.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2016.0391
Related content
content/journals/10.1049/ietspr.2016.0391
pub_keyword,iet_inspecKeyword,pub_concept
6
6