http://iet.metastore.ingenta.com
1887

Gradient-based algorithm for designing sensing matrix considering real mutual coherence for compressed sensing systems

Gradient-based algorithm for designing sensing matrix considering real mutual coherence for compressed sensing systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the issue of designing the sensing matrix for a compressed sensing (CS) system assuming that the dictionary is given. Traditionally, the measurement of small mutual coherence is considered to design the optimal sensing matrix so that the Gram of the equivalent dictionary is as close to the target Gram as possible, where the equivalent dictionary is not normalised. In other words, these algorithms are designed to solve the CS problem using an optimisation stage followed by normalisation. To achieve a global solution, a novel strategy of the sensing matrix design is proposed by using a gradient-based method, in which the measure of real mutual coherence for the equivalent dictionary is considered. According to this approach, a minimised objective function based on alternating minimisation is also developed through searching the target Gram within a set of relaxed equiangular tight frames. Some experiments are done to compare the performance of the newly designed sensing matrix with the existing ones under the condition that the dictionary is fixed. For the simulations of synthetic data and real image, the proposed approach provides better signal reconstruction accuracy.

References

    1. 1)
      • 1. Candès, E.J., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509.
    2. 2)
      • 2. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    3. 3)
      • 3. Candès, E.J., Tao, T.: ‘Near optimal signal recovery from random projection: universal encoding strategies?’, IEEE Trans. Inf. Theory, 2006, 52, (12), pp. 54065425.
    4. 4)
      • 4. Candès, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130.
    5. 5)
      • 5. Tsaig, Y., Donoho, D.L.: ‘Extensions of compressed sensing’, Signal Process., 2006, 86, (3), pp. 549571.
    6. 6)
      • 6. Duarte, M.F., Eldar, Y.C.: ‘Structured compressed sensing: From theory to applications’, IEEE Trans. Signal Process., 2011, 59, (9), pp. 40534085.
    7. 7)
      • 7. Rauhut, H., Schnass, K., Vandergheynst, P.: ‘Compressed sensing and redundant dictionaries’, IEEE Trans. Inf. Theory, 2008, 54, (5), pp. 22102219.
    8. 8)
      • 8. Pudlewski, S., Melodia, T., Prasanna, A.: ‘Compressed-sensing-enabled video streaming for wireless multimedia sensor networks’, IEEE Trans. Mob. Comput., 2010, 11, (6), pp. 10601072.
    9. 9)
      • 9. Sharma, S.K., Patwary, M., Abdel-Maguid, M.: ‘Spectral efficient compressive transmission framework for wireless communication systems’, IET Signal Process., 2013, 7, (7), pp. 558564.
    10. 10)
      • 10. Montefusco, L.B., Lazzaro, D., Papi, S., et al: ‘A fast compressed sensing approach to 3D MR image reconstruction’, IEEE Trans. Med. Imaging, 2011, 30, (5), pp. 10641075.
    11. 11)
      • 11. Liu, H., Song, B., Tian, F., et al: ‘Compressed sensing with partial support information: coherence-based performance guarantees and alternative direction method of multiplier reconstruction algorithm’, IET Signal Process., 2014, 8, (7), pp. 749758.
    12. 12)
      • 12. Donoho, D.L., Elad, M.: ‘Optimally sparse representation in general (nonorthonormal) dictionaries via 1 minimization’, Proc. Nat. Acad. Sci., 2003, 100, (5), pp. 21972202.
    13. 13)
      • 13. Pati, Y., Rezaifar, R., Krishnaprasad, P.: ‘Orthogonal matching pursuit: recursive function approximation with application to wavelet decomposition’. Proc. of the Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, 1993.
    14. 14)
      • 14. Chen, S., Donoho, D.L., Saunders, M.: ‘Atomic decomposition by basis pursuit’, SIAM J. Sci. Comput., 1998, 20, (1), pp. 3361.
    15. 15)
      • 15. Zibulevsky, M., Elad, M. : ‘12 optimization in signal and image processing’, IEEE Signal Process. Mag., 2010, 27, (3), pp. 7688.
    16. 16)
      • 16. Gribonval, R., Nielsen, M.: ‘Sparse representations in unions of bases’, IEEE Trans. Inf. Theory, 2003, 49, (12), pp. 33203325.
    17. 17)
      • 17. Elad, M.: ‘Optimized projections for compressed sensing’, IEEE Trans. Signal Process., 2007, 55, (12), pp. 56955702.
    18. 18)
      • 18. Strohmer, T., Heath, R.W.: ‘Grassmannian frames with applications to coding and communication’, Appl. Comput. Harmon. Anal., 2003, 14, (3), pp. 257275.
    19. 19)
      • 19. Duarte-Carvajalino, J.M., Sapiro, G.: ‘Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization’, IEEE Trans. Image Process., 2009, 18, (7), pp. 13951408.
    20. 20)
      • 20. Li, G., Zhu, Z., Yang, D., et al: ‘On projection matrix optimization for compressive sensing systems’, IEEE Trans. Signal Process., 2013, 61, (11), pp. 28872898.
    21. 21)
      • 21. Aharon, M., Elad, M., Bruckstein, A.: ‘The KSVD: an algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (12), pp. 43114322.
    22. 22)
      • 22. Yaghoobi, M., Daudet, L., Davies, M.E.: ‘Parametric dictionary design for sparse coding’, IEEE Trans. Signal Process., 2009, 57, (12), pp. 48004810.
    23. 23)
      • 23. Xu, J., Pi, Y., Cao, Z.: ‘Optimized projection matrix for compressive sensing’, EURASIP J. Adv. Signal Process., 2010, 43, pp. 18.
    24. 24)
      • 24. Abolghasemi, V., Ferdowsi, S., Sanei, S.: ‘A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing’, Signal Process., 2012, 92, (4), pp. 9991009.
    25. 25)
      • 25. Abolghasemi, V., Ferdowsi, S., Makkiabadi, B., et al: ‘On optimization of the measurement matrix for compressive sensing’. Proc. Eur. Signal Processing Conf., Aalborg, Denmark, 2010.
    26. 26)
      • 26. Tropp, J.A., Dhillon, I.S., Heath, R.W., et al: ‘Designing structured tight frames via an alternating projection method’, IEEE Trans. Inf. Theory, 2005, 51, (1), pp. 188209.
    27. 27)
      • 27. Dhillon, I.S., Heath, R.W.Jr., Strohmer, T., et al: ‘Constructing packings in Grassmannian manifolds via alternating projection’, Experim. Math., 2008, 17, (1), pp. 935.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0391
Loading

Related content

content/journals/10.1049/iet-spr.2016.0391
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address