access icon free Detection and classification of islanding and power quality disturbances in microgrid using hybrid signal processing and data mining techniques

This study presents multi-scale morphological gradient filter (MSMGF) and short-time modified Hilbert transform (STMHT) techniques, respectively, to detect and classify multiclass power system disturbances in a distributed generation (DG)-based microgrid environment. The non-stationary power signal samples measured near the target DG's are processed through the proposed MSMGF and STMHT techniques, respectively, and some computations over them generates the target parameter sets. Depending on the complexity of the overlapping in the target attribute values for different disturbance patterns, fuzzy judgment tree structure is incorporated for multiclass event classification, which proves to be robust for most of the classes. In this regard, an extensive simulation on the proposed microgrid models, subjected to a number of multiclass disturbances has been performed in MATLAB/Simulink environment. The faster execution, lower computational burden, superior efficiency as well as better accuracy in multiclass power system disturbance classification by the proposed judgment tree-based MSMGF and STMHT techniques, respectively, as compared to some of the conventional techniques, is significantly illustrated in the performance evaluation section. Further, as illustrated in this section, the real-time capability of the proposed techniques has been verified in the hardware environment, where the results shown are satisfactory.

Inspec keywords: data mining; distributed power generation; fuzzy set theory; signal processing; trees (mathematics); Hilbert transforms; filtering theory

Other keywords: short-time modified Hilbert transform; STMHT; multiclass event classification; distributed generation based microgrid environment; fuzzy judgment tree structure; multi-scale morphological gradient filter; MSMGF; multiclass power system disturbances; hybrid signal processing and data mining techniques

Subjects: Integral transforms; Power engineering computing; Integral transforms; Data handling techniques; Knowledge engineering techniques; Distributed power generation; Combinatorial mathematics; Combinatorial mathematics; Filtering methods in signal processing

References

    1. 1)
      • 25. Gautam, S., Brahma, S.M.: ‘Detection of high impedance fault in power distribution systems using mathematical morphology’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12261234.
    2. 2)
      • 31. Bercher, J.F., Vignat, C.: ‘Estimating the entropy of a signal with applications’, IEEE Trans. Signal Process., 2000, 48, (6), p. 16871694.
    3. 3)
      • 9. Senroy, N., Suryanarayanan, S., Ribeiro, P.F.: ‘An improved Hilbert–Huang method for analysis of time-varying waveforms in power quality’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 18431850.
    4. 4)
      • 19. Gautam, S., Brahma, S.M.: ‘Guidelines for selection of an optimal structuring element for mathematical morphology based tools to detect power system disturbances’, IEEE in Power and Energy Society General Meeting, 2012, pp. 16.
    5. 5)
      • 14. Tse, N.C., Chan, J.Y., Lau, W.H., et al: ‘Hybrid wavelet and Hilbert transform with frequency-shifting decomposition for power quality analysis’, IEEE Trans. Instrum. Meas., 2012, 61, (12), pp. 32253233.
    6. 6)
      • 12. Benmalek, M., Charef, A.: ‘Digital fractional order operators for R-wave detection in electrocardiogram signal’, IET Signal Process., 2009, 3, (5), pp. 381391.
    7. 7)
      • 33. Stuti, S., Mishra, S., Singh, B.: ‘Empirical-mode decomposition with Hilbert transform for power-quality assessment’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 21592165.
    8. 8)
      • 11. Kumar, R., Singh, B., Shahani, D.T., et al: ‘Recognition of power-quality disturbances using S-transform-based ANN classifier and rule-based decision tree’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 12491258.
    9. 9)
      • 39. Shunfan, H., Li, K., Zhang, M.: ‘A real-time power quality disturbances classification using hybrid method based on S-transform and dynamics’, IEEE Trans. Instrum. Meas., 2013, 62, (9), pp. 24652247.
    10. 10)
      • 13. Granados-Lieberman, D., Garcia-Perez, A., Cabal-Yepez, E.: ‘Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review’, IET. Gener. Transm. Distrib., 2011, 5, (4), pp. 519529.
    11. 11)
      • 24. Safdar, R., Mokhlis, H., Arof, H., et al: ‘A sensitivity analysis of different power system parameters on islanding detection’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 461470.
    12. 12)
      • 7. Milczarek, A., Malinowski, M., Guerrero, J.M.: ‘Reactive power management in islanded microgrid – proportional power sharing in hierarchical droop control’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 16311638.
    13. 13)
      • 4. Logenthiran, T., Srinivasan, D., Khambadkone, A.M., et al: ‘Multiagent system for real-time operation of a microgrid in real-time digital simulator’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 925933.
    14. 14)
      • 21. Farhan, M.A., Swarup, K.S.: ‘Mathematical morphology-based islanding detection for distributed generation’, IET. Gener. Transm. Distrib., 2016, 10, (2), pp. 518525.
    15. 15)
      • 35. Mladen, K., Rikalo, I.: ‘Detect and classify faults using neural nets’, IEEE Comput. Appl. Power, 1996, 9, (4), pp. 4247.
    16. 16)
      • 18. Sun, S., Jiang, Z., Wang, H., et al: ‘Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform’, Comput. Methods Programs Biomed., 2014, 114, (3), pp. 219230.
    17. 17)
      • 40. Chassaing, R.: ‘Digital signal processing and applications with the c6713 and c6416 DSK’, vol. 16, (John Wiley & Sons, 2004).
    18. 18)
      • 22. Zhu, J., Ji, T.Y., Li, M.S., et al: ‘Detection and classification of power disturbances using mathematical morphology with trapezoid structuring elements and signal envelopes’. Int. Conf. IEEE Innovative Smart Grid Technologies, Europe, 2014, pp. 16.
    19. 19)
      • 37. Weiming, T., Song, X., Lin, J., et al: ‘Detection and classification of power quality disturbances based on wavelet packet decomposition and support vector machines’. IEEE Proc. 8th Int. Conf. Signal Processing, 2006, vol. 4.
    20. 20)
      • 16. Thuraisingham, R.A.: ‘Estimation of Teager energy using the Hilbert Huang transform’, IET Signal Process., 2015, 9, (1), pp. 8287.
    21. 21)
      • 10. Krishna, B.V., Baskaran, K.: ‘Parallel computing for efficient time–frequency feature extraction of power quality disturbances’, IET Signal Process., 2013, 7, (4), pp. 312326.
    22. 22)
      • 1. Mohanty, S.R., Kishor, N., Ray, P.K., et al: ‘Comparative study of advanced signal processing techniques for islanding detection in a hybrid distributed generation system’, IEEE Trans. Sustain. Energy, 2015, 6, (1), pp. 122131.
    23. 23)
      • 30. Li, X., Hui, D., Lai, X.: ‘Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 464473.
    24. 24)
      • 32. Milan, B., Dash, P.K.: ‘Measurement and classification of simultaneous power signal patterns with an S-transform variant and fuzzy decision tree’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 18191827.
    25. 25)
      • 3. Hosseini, S.A., Amjady, N., Velayati, M.H.: ‘A Fourier based wavelet approach using Heisenberg's uncertainty principle and Shannon's entropy criterion to monitor power system small signal oscillations’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33143326.
    26. 26)
      • 23. Xueqin, Liu, Kennedy, J.M., Laverty, D.M.D., et al: ‘Wide-area phase-angle measurements for islanding detection – an adaptive nonlinear approach’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 19011911.
    27. 27)
      • 5. Papaioannou, D.I., Papadimitriou, C.N., Dimeas, A.L., et al: ‘Optimization & Sensitivity Analysis of Microgrids using HOMER software – A Case Study’. 2014, pp. 3537.
    28. 28)
      • 36. Jaehak, C., Powers, E.J., Grady, W.M., et alPower disturbance classifier using a rule-based method and wavelet packet-based hidden Markov model’, IEEE Trans. Power Deliv., 2002, 17, (1), pp. 233241.
    29. 29)
      • 26. Gautam, S., Brahma, S.M.: ‘Guidelines for selection of an optimal structuring element for mathematical morphology based tools to detect power system disturbances’. Proc. IEEE Power & Energy Society General Meeting, 2012, July 2012, pp. 16.
    30. 30)
      • 34. Masoum, M.A.S., Jamali, S., Ghaffarzadeh, N.: ‘Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks’, IET Sci. Meas. Technol., 2010, 4, (4), pp. 193205.
    31. 31)
      • 27. Ghosh, R., Chatterjee, B., Chakravorti, S.: ‘A method for unambiguous identification of on-field recorded insulator leakage current waveforms portraying electrical activity on the surface’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (4), pp. 21562164.
    32. 32)
      • 38. Jianmin, L., Teng, Z., Tang, Q., et alDetection and classification of power quality disturbances using double resolution S-transform and DAG-SVMs’, IEEE Trans. Instrum. Meas., 2016, 65, (10), pp. 23022312.
    33. 33)
      • 8. Bayrak, G., Kabalci, E.: ‘Implementation of a new remote islanding detection method for wind–solar hybrid power plants’, Renew. Sustain. Energy Rev., 2016, 58, pp. 115.
    34. 34)
      • 20. Ribeiro, B., Pereira, H., Almeida, R., et al: ‘Optimization of sitting posture classification based on user identification’. IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), February 2015, pp. 16.
    35. 35)
      • 15. Chilukuri, M.V., Dash, P.K.: ‘Multiresolution S-transform-based fuzzy recognition system for power quality events’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 323330.
    36. 36)
      • 17. Chen, Y., Ji, T.Y., Li, M.S., et alPower quality disturbance detection based on morphology singular entropy’. Int. Conf. IEEE Innovative Smart Grid Technologies, Asia (ISGT ASIA), 3 November 215, pp. 15.
    37. 37)
      • 2. Ray, P.K., Kishor, N., Mohanty, S.R.: ‘Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and-transform’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 10821094.
    38. 38)
      • 28. Kar, S., Samantaray, S.R.: ‘Time-frequency transform-based differential scheme for microgrid protection’, IET. Gener. Transm. Distrib., 2014, 8, (2), pp. 310320.
    39. 39)
      • 6. Lu, B., Li, Y., Wu, X., et al: ‘A review of recent advances in wind turbine condition monitoring and fault diagnosis’, IEEE Power Electron. Mach. Wind Appl., 2009, pp. 17.
    40. 40)
      • 29. Mitra, A., Chatterjee, D.: ‘Active power control of DFIG-based wind farm for improvement of transient stability of power systems’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 8293.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0352
Loading

Related content

content/journals/10.1049/iet-spr.2016.0352
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading