http://iet.metastore.ingenta.com
1887

Three-dimensional temperature distribution reconstruction using the extreme learning machine

Three-dimensional temperature distribution reconstruction using the extreme learning machine

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The temperature distribution in real-world industrial environments is often in a three-dimensional (3D) space, and developing an efficient algorithm to reconstruct such volume information may be beneficial for increasing the system efficiency, improving the energy saving and reducing the pollutant emission. A new algorithm is put forward for 3D temperature distribution reconstruction (3DTDR) tasks according to the given finite temperature observation data. Owing to the distinct advantages, including fast learning speed, good generalisation ability etc. a new robust regularised extreme learning machine (RRELM) algorithm is developed for the 3DTDR task. Unlike existing tomography-based measurement methods and local point measurement technologies, the proposed algorithm can reconstruct 3D temperature distributions on the basis of the given local temperature observation information. Furthermore, different from available inverse heat transfer problems, the proposed reconstruction method does not solve complicated partial differential equations. Numerical simulation results verify the effectiveness of the RRELM algorithm for 3DTDR problems. Furthermore, the proposed RRELM method has a satisfactory robustness for the noises in the measurement data and can achieve the high-quality reconstruction when the sampling ratio is low. As a result, an effective algorithm is introduced for the 3DTDR problem.

References

    1. 1)
      • 1. Willcox, K.: ‘Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition’, Comput. Fluids, 2006, 35, (2), pp. 208226.
    2. 2)
      • 2. Venturi, D., Karniadakis, G.E.: ‘Gappy data and reconstruction procedures for flow past a cylinder’, J. Fluid Mech., 2004, 519, (2), pp. 315336.
    3. 3)
      • 3. Yakhot, A., Anor, T., Karniadakis, G.E.: ‘A reconstruction method for gappy and noisy arterial flow data’, IEEE Trans. Med. Imaging, 2007, 26, (12), pp. 16811697.
    4. 4)
      • 4. Lei, J., Liu, S.: ‘Temperature field reconstruction from the partial measurement data using the gappy proper orthogonal decomposition method’, IET Sci. Meas. Technol., 2013, 7, (3), pp. 171179.
    5. 5)
      • 5. Yu, X., Liu, Y., Zhu, Y., et al: ‘Efficient sampling and compressive sensing for urban monitoring vehicular sensor networks’, IET Wirel. Sensor Syst., 2012, 2, (3), pp. 214221.
    6. 6)
      • 6. Candès, E.J., Recht, B.: ‘Exact matrix completion via convex optimization’, Found. Comput. Math., 2009, 9, (6), pp. 717772.
    7. 7)
      • 7. Candès, E.J., Tao, T.: ‘The power of convex relaxation: near-optimal matrix completion’, IEEE Trans. Inf. Theory, 2010, 56, (5), pp. 20532080.
    8. 8)
      • 8. Kong, L., Xia, M., Liu, X., et al: ‘Data loss and reconstruction in wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2014, 25, (11), pp. 28182828.
    9. 9)
      • 9. Goldfarb, D., Qin, Z.: ‘Robust low-rank tensor recovery: models and algorithms’, SIAM J. Matrix Anal. Appl., 2014, 35, (1), pp. 225253.
    10. 10)
      • 10. Liu, Y.Y., Shang, F.H.: ‘An efficient matrix factorization method for tensor completion’, IEEE Signal Process. Lett., 2013, 20, (4), pp. 307310.
    11. 11)
      • 11. Tan, H.C., Cheng, B., Wang, W.H., et al: ‘Tensor completion via a multi-linear low-n-rank factorization model’, Neurocomputing, 2014, 133, pp. 161169.
    12. 12)
      • 12. Zhang, X.P., Hu, N.Q., Cheng, Z., et al: ‘Vibration data recovery based on compressed sensing’, Acta Phys. Sin., 2014, 63, (20), pp. 200506-1200506-10.
    13. 13)
      • 13. Orchard, G., Zhang, J., Suo, Y.M., et al: ‘Real time compressive sensing video reconstruction in hardware’, IEEE J. Emerg. Sel. Top. Circ. Syst., 2012, 2, (3), pp. 604615.
    14. 14)
      • 14. He, L.T., Wang, Y.L.: ‘Iterative support detection-based split Bregman method for wavelet frame-based image inpainting’, IEEE Trans. Image Process., 2014, 23, (12), pp. 54705485.
    15. 15)
      • 15. Cheng, Q., Shen, H.F., Zhang, L.P., et al: ‘Inpainting for remotely sensed images with a multichannel nonlocal total variation model’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (1), pp. 175187.
    16. 16)
      • 16. Shen, L., Xu, Y.S., Zeng, X.Y.: ‘Wavelet inpainting with the L0 sparse regularization’, Appl. Comput. Harmon. Anal., 2016, 41, (1), pp. 2653.
    17. 17)
      • 17. Chen, D.Q., Zhou, Y.: ‘Inexact alternating direction method based on proximity projection operator for image inpainting in wavelet domain’, Neurocomputing, 2016, 189, pp. 145159.
    18. 18)
      • 18. Zhang, X., Chan, T.F.: ‘Wavelet inpainting by nonlocal total variation’, Inverse Probl. Imag., 2010, 4, (1), pp. 191210.
    19. 19)
      • 19. Fang, L., Zeng, T.Y.: ‘A universal variational framework for sparsity based image inpainting’, IEEE Trans. Image Process., 2014, 23, (10), pp. 42424254.
    20. 20)
      • 20. Goldstein, T., Osher, S.: ‘The split Bregman method for L1-regularized problems’, SIAM J. Imag. Sci., 2009, 2, (2), pp. 323343.
    21. 21)
      • 21. Montefusco, L.B., Lazzaro, D., Papi, S., et al: ‘A fast compressed sensing approach to 3D MR image reconstruction’, IEEE Trans. Med. Imaging, 2011, 30, (5), pp. 10641075.
    22. 22)
      • 22. Combettes, P.L., Wajs, V.R.: ‘Signal recovery by proximal forward-backward splitting’, SIAM J. Multiscale Model. Simul., 2005, 4, (4), pp. 11681200.
    23. 23)
      • 23. Chan, R.H., Tao, M., Yuan, X.M.: ‘Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers’, SIAM J. Imag. Sci., 2014, 7, (2), pp. 13091334.
    24. 24)
      • 24. Graupe, D.: ‘Principles of artificial neural networks’ (World Scientific Publishing, 2007).
    25. 25)
      • 25. Wang, X.C., Shi, F., Yu, L., et al: ‘Forty-three neural network case analysis using the MATLAB’ (Beihang University Press, Beijing, 2013).
    26. 26)
      • 26. Kolda, T.G., Bader, B.W.: ‘Tensor decompositions and applications’, SIAM Rev.., 2009, 51, (3), pp. 455500.
    27. 27)
      • 27. Tan, H., Feng, J., Feng, G., et al: ‘Traffic volume data outlier recovery via tensor model’, Math. Probl. Eng., 2013, 2013, pp. 19.
    28. 28)
      • 28. Liu, J., Musialski, P., Wonka, P., et al: ‘Tensor completion for estimating missing values in visual data’. IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, 27 September–4 October 2009, pp. 21142121.
    29. 29)
      • 29. Liu, J., Musialski, P., Wonka, P., et al: ‘Tensor completion for estimating missing values in visual data’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (1), pp. 208220.
    30. 30)
      • 30. Gandy, S., Recht, B., Yamada, I.: ‘Tensor completion and low-n-rank tensor recovery via convex optimization’, Inverse Probl.., 2011, 27, (2), pp. 120.
    31. 31)
      • 31. Cichocki, A., Zdunek, R., Phan, A.H., et al: ‘Nonnegative matrix and tensor factorizations: applications to exploratory multiway data analysis and blind source separation’ (John Wiley & Sons, 2009).
    32. 32)
      • 32. Yang, L., Huang, Z.H., Shi, X.: ‘A fixed point iterative method for low n-rank tensor pursuit’, IEEE Trans. Signal Process., 2013, 61, (11), pp. 29522962.
    33. 33)
      • 33. Huang, J., Zhang, S., Li, H., et al: ‘Composite splitting algorithms for convex optimization’, Comput. Vis. Image Underst., 2011, 115, (12), pp. 16101622.
    34. 34)
      • 34. Xu, Z., Yao, M., Wu, Z.H., et al: ‘Incremental regularized extreme learning machine and it's enhancement’, Neurocomputing, 2016, 174, (Part A), pp. 134142.
    35. 35)
      • 35. Huang, G.B., Zhu, Q.Y., Siew, C.K.: ‘Extreme learning machine: theory and applications’, Neurocomputing, 2006, 70, (1–3), pp. 489501.
    36. 36)
      • 36. Huang, G.B.: ‘What are extreme learning machines? Filling the gap between frank Rosenblatt's dream and John von Neumann's puzzle’, Cognit. Comput., 2015, 7, (3), pp. 263278.
    37. 37)
      • 37. Huang, G.B., Wang, D.H., Lan, Y.: ‘Extreme learning machines: a survey’, Int. J. Mach. Learn. Cybern., 2011, 2, (2), pp. 107122.
    38. 38)
      • 38. Tang, J., Deng, C., Huang, G.B.: ‘Extreme learning machine for multilayer perceptron’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (4), pp. 809821.
    39. 39)
      • 39. Martínez-Martínez, J.M., Escandell-Montero, P., Soria-Olivas, E., et al: ‘Regularized extreme learning machine for regression problems’, Neurocomputing, 2011, 74, (17), pp. 37163721.
    40. 40)
      • 40. Tikhonov, A.N., Arsenin, V.Y.: ‘Solution of ill-posed problems’ (V.H. Winston & Sons, New York, 1977).
    41. 41)
      • 41. Huber, P.J.: ‘Robust statistics’ (John Wiley & Sons, New York, 1981).
    42. 42)
      • 42. Dodge, Y., Jureckova, J.: ‘Adaptive regression’ (Springer-Verlag, New York, 2000).
    43. 43)
      • 43. Cichocki, A., Amari, S.: ‘Adaptive blind signal and image processing’ (John Wiley & Sons, 2002).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0338
Loading

Related content

content/journals/10.1049/iet-spr.2016.0338
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address