http://iet.metastore.ingenta.com
1887

access icon free Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle

Loading full text...

Full text loading...

/deliver/fulltext/iet-spr/11/2/IET-SPR.2016.0220.html;jsessionid=4hdrbiqa6esre.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-spr.2016.0220&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering prediction and control’ (Prentice Hall, Englewood Cliffs, New Jersey, 1984).
    2. 2)
      • 2. Ljung, L.: ‘System identification: theory for the user’ (Prentice Hall, Englewood Cliffs, New Jersey, 1999, 2nd edn.).
    3. 3)
      • 3. Xu, L.: ‘A proportional differential control method for a time-delay system using the Taylor expansion approximation’, Appl. Math. Comput., 2014, 236, pp. 391399.
    4. 4)
      • 4. Xu, L., Chen, L., Xiong, W.L.: ‘Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration’, Nonlinear Dyn., 2015, 79, (3), pp. 21552163.
    5. 5)
      • 5. Ding, F., Wang, X.H., Chen, Q.J., et al: ‘Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition’, Circuits Syst. Signal Process., 2016, 35, (9), pp. 33233338.
    6. 6)
      • 6. Liu, T., Gao, F.R.: ‘A frequency domain step response identification method for continuous-time processes with time delay’, J. Process. Control, 2010, 20, (7), pp. 800809.
    7. 7)
      • 7. Ralchenko, M., Svilans, M., Samson, C., et al: ‘Finite-difference time-domain modelling of through-the-Earth radio signal propagation’, Comput. Geosci., 2015, 85, pp. 184195.
    8. 8)
      • 8. Ghosh, A., Malla, S.G., Bhende, C.N.: ‘Small-signal modelling and control of photovoltaic based water pumping system’, ISA Trans., 2015, 57, pp. 382389.
    9. 9)
      • 9. Ahmed, S., Huang, B., Shah, S.L.: ‘Novel identification method from step response’, Control Eng. Pract., 2007, 15, (5), pp. 545556.
    10. 10)
      • 10. Ahemd, S., Huang, B., Shah, S.L.: ‘Identification from step responses with transient initial conditions’, J. Process Control, 2008, 18, (2), pp. 121130.
    11. 11)
      • 11. Balaguer, P., Alfaro, V., Arrieta, O.: ‘Second order inverse response process identification from transient step response’, ISA Trans., 2011, 50, (2), pp. 231238.
    12. 12)
      • 12. Li, S.Y., Cai, W.J., Mei, H., et al: ‘Robust decentralized parameter identification for two-input two-output process from closed-loop step responses’, Control Eng. Pract., 2005, 13, (4), pp. 519531.
    13. 13)
      • 13. Aziz, M.H.R.A., Mohd-Mokhtar, R., Wang, L.: ‘Identification of step response estimates utilizing continuous time subspace approach’, J. Process Control, 2013, 23, (3), pp. 254270.
    14. 14)
      • 14. Hidayat, E., Medvedev, A.: ‘Laguerre domain identification of continuous linear time-delay systems from impulse response data’, Automatica, 2012, 48, (11), pp. 29022907.
    15. 15)
      • 15. Tommasi, L.D., Deschrijver, D., Dhaene, T.: ‘Transfer function identification from phase response data’, AEU Int. J. Electron. Commun., 2010, 64, (3), pp. 218223.
    16. 16)
      • 16. Xu, L.: ‘The damping iterative parameter identification method for dynamical systems based on the sine signal measurement’, Signal Process., 2016, 120, pp. 660667.
    17. 17)
      • 17. Xu, L., Ding, F.: ‘Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling’, Circuits Syst. Signal Process., 2017, 36, doi: 10.1007/s00034-016-0378-4.
    18. 18)
      • 18. Xu, L.: ‘Application of the Newton iteration algorithm to the parameter estimation for dynamical systems’, J. Comput. Appl. Math., 2015, 288, pp. 3343.
    19. 19)
      • 19. Wang, Y.J., Ding, F.: ‘Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model’, Automatica, 2016, 71, pp. 308313.
    20. 20)
      • 20. Wang, Y.J., Ding, F.: ‘The filtering based iterative identification for multivariable systems’, IET Control Theory Appl., 2016, 10, (8), pp. 894902.
    21. 21)
      • 21. Wang, Y.J., Ding, F.: ‘The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique’, Signal Process., 2016, 128, pp. 212221.
    22. 22)
      • 22. Ding, F., Chen, T.: ‘Hierarchical least squares identification methods for multivariable systems’, IEEE Trans. Autom. Control, 2005, 50, (3), pp. 397402.
    23. 23)
      • 23. Ding, F.: ‘Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling’, Appl. Math. Model., 2013, 37, pp. 16941704.
    24. 24)
      • 24. Ding, F., Liu, G., Liu, X.P.: ‘Parameter estimation with scarce measurements’, Automatica, 2011, 47, (8), pp. 16461655.
    25. 25)
      • 25. Wang, C., Zhu, L.: ‘Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory’, J. Franklin Inst., 2015, 352, (10), pp. 46244637.
    26. 26)
      • 26. Chen, L., Li, J.H., Ding, R.F.: ‘Identification of the second-order systems based on the step response’, Math. Comput. Model., 2011, 53, (5-6), pp. 10741083.
    27. 27)
      • 27. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (Johns Hopkins University Press, Baltimore, MD, 1996, 3rd edn.).
    28. 28)
      • 28. Ding, F., Xu, L., Zhu, Q.M.: ‘Performance analysis of the generalized projection identification for time-varying systems’, IET Control Theory Appl., 2017, 11, doi: 10.1049/iet-cta.2016.0202.
    29. 29)
      • 29. Wang, D.Q., Zhang, W.: ‘Improved least squares identification algorithm for multivariable Hammerstein systems’, J. Franklin Inst., 2015, 352, (11), pp. 52925370.
    30. 30)
      • 30. Wang, Y.J., Ding, F.: ‘Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering’, Nonlinear Dyn., 2016, 84, (2), pp. 10451053.
    31. 31)
      • 31. Wang, D.Q.: ‘Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models’, Appl. Math. Lett., 2016, 57, pp. 1319.
    32. 32)
      • 32. Mao, Y.W., Ding, F.: ‘A novel parameter separation based identification algorithm for Hammerstein systems’, Appl. Math. Lett., 2016, 60, pp. 2127.
    33. 33)
      • 33. Pan, J., Yang, X.H., Cai, H.F., et al: ‘Image noise smoothing using a modified Kalman filter’, Neurocomputing, 2016, 173, pp. 16251629.
    34. 34)
      • 34. Feng, L., Wu, M.H., Li, Q.X., et al: ‘Array factor forming for image reconstruction of one-dimensional nonuniform aperture synthesis radiometers’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (2), pp. 237241.
    35. 35)
      • 35. Wang, T.Z., Qi, J., Xu, H., et al: ‘Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter’, ISA Trans., 2016, 60, pp. 156163.
    36. 36)
      • 36. Wang, T.Z., Wu, H., Ni, M.Q., et al: ‘An adaptive confidence limit for periodic non-steady conditions fault detection’, Mech. Syst. Signal Process., 2016, 72-73, pp. 328345.
    37. 37)
      • 37. Ji, Y., Liu, X.M.: ‘Unified synchronization criteria for hybrid switching-impulsive dynamical networks’, Circuits Syst. Signal Process., 2015, 34, (5), pp. 14991517.
    38. 38)
      • 38. Li, H., Shi, Y., Yan, W.: ‘On neighbor information utilization in distributed receding horizon control for consensus-seeking’, IEEE Trans. Cybern., 2016, 46, (9), pp. 20192027.
    39. 39)
      • 39. Li, H., Shi, Y., Yan, W.: ‘Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ at-gain stability’, Automatica, 2016, 68, pp. 148154.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0220
Loading

Related content

content/journals/10.1049/iet-spr.2016.0220
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address