Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle

Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors consider the parameter estimation problem of the response signal from a highly non-linear dynamical system. The step response experiment is taken for generating the measured data. Considering the stochastic disturbance in the industrial process and using the gradient search, a multi-innovation stochastic gradient algorithm is proposed through expanding the scalar innovation into an innovation vector in order to obtain more accurate parameter estimates. Furthermore, a hierarchical identification algorithm is derived by means of the decomposition technique and interaction estimation theory. Regarding to the coupled parameter problem between subsystems, the authors put forward the scheme of replacing the unknown parameters with their previous parameter estimates to realise the parameter estimation algorithm. Finally, several examples are provided to access and compare the behaviour of the proposed identification techniques.

References

    1. 1)
      • 15. Tommasi, L.D., Deschrijver, D., Dhaene, T.: ‘Transfer function identification from phase response data’, AEU Int. J. Electron. Commun., 2010, 64, (3), pp. 218223.
    2. 2)
      • 35. Wang, T.Z., Qi, J., Xu, H., et al: ‘Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter’, ISA Trans., 2016, 60, pp. 156163.
    3. 3)
      • 26. Chen, L., Li, J.H., Ding, R.F.: ‘Identification of the second-order systems based on the step response’, Math. Comput. Model., 2011, 53, (5-6), pp. 10741083.
    4. 4)
      • 28. Ding, F., Xu, L., Zhu, Q.M.: ‘Performance analysis of the generalized projection identification for time-varying systems’, IET Control Theory Appl., 2017, 11, doi: 10.1049/iet-cta.2016.0202.
    5. 5)
      • 30. Wang, Y.J., Ding, F.: ‘Recursive least squares algorithm and gradient algorithm for Hammerstein-Wiener systems using the data filtering’, Nonlinear Dyn., 2016, 84, (2), pp. 10451053.
    6. 6)
      • 17. Xu, L., Ding, F.: ‘Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling’, Circuits Syst. Signal Process., 2017, 36, doi: 10.1007/s00034-016-0378-4.
    7. 7)
      • 11. Balaguer, P., Alfaro, V., Arrieta, O.: ‘Second order inverse response process identification from transient step response’, ISA Trans., 2011, 50, (2), pp. 231238.
    8. 8)
      • 2. Ljung, L.: ‘System identification: theory for the user’ (Prentice Hall, Englewood Cliffs, New Jersey, 1999, 2nd edn.).
    9. 9)
      • 31. Wang, D.Q.: ‘Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models’, Appl. Math. Lett., 2016, 57, pp. 1319.
    10. 10)
      • 16. Xu, L.: ‘The damping iterative parameter identification method for dynamical systems based on the sine signal measurement’, Signal Process., 2016, 120, pp. 660667.
    11. 11)
      • 14. Hidayat, E., Medvedev, A.: ‘Laguerre domain identification of continuous linear time-delay systems from impulse response data’, Automatica, 2012, 48, (11), pp. 29022907.
    12. 12)
      • 6. Liu, T., Gao, F.R.: ‘A frequency domain step response identification method for continuous-time processes with time delay’, J. Process. Control, 2010, 20, (7), pp. 800809.
    13. 13)
      • 12. Li, S.Y., Cai, W.J., Mei, H., et al: ‘Robust decentralized parameter identification for two-input two-output process from closed-loop step responses’, Control Eng. Pract., 2005, 13, (4), pp. 519531.
    14. 14)
      • 36. Wang, T.Z., Wu, H., Ni, M.Q., et al: ‘An adaptive confidence limit for periodic non-steady conditions fault detection’, Mech. Syst. Signal Process., 2016, 72-73, pp. 328345.
    15. 15)
      • 32. Mao, Y.W., Ding, F.: ‘A novel parameter separation based identification algorithm for Hammerstein systems’, Appl. Math. Lett., 2016, 60, pp. 2127.
    16. 16)
      • 10. Ahemd, S., Huang, B., Shah, S.L.: ‘Identification from step responses with transient initial conditions’, J. Process Control, 2008, 18, (2), pp. 121130.
    17. 17)
      • 21. Wang, Y.J., Ding, F.: ‘The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique’, Signal Process., 2016, 128, pp. 212221.
    18. 18)
      • 34. Feng, L., Wu, M.H., Li, Q.X., et al: ‘Array factor forming for image reconstruction of one-dimensional nonuniform aperture synthesis radiometers’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (2), pp. 237241.
    19. 19)
      • 8. Ghosh, A., Malla, S.G., Bhende, C.N.: ‘Small-signal modelling and control of photovoltaic based water pumping system’, ISA Trans., 2015, 57, pp. 382389.
    20. 20)
      • 39. Li, H., Shi, Y., Yan, W.: ‘Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ at-gain stability’, Automatica, 2016, 68, pp. 148154.
    21. 21)
      • 4. Xu, L., Chen, L., Xiong, W.L.: ‘Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration’, Nonlinear Dyn., 2015, 79, (3), pp. 21552163.
    22. 22)
      • 1. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering prediction and control’ (Prentice Hall, Englewood Cliffs, New Jersey, 1984).
    23. 23)
      • 37. Ji, Y., Liu, X.M.: ‘Unified synchronization criteria for hybrid switching-impulsive dynamical networks’, Circuits Syst. Signal Process., 2015, 34, (5), pp. 14991517.
    24. 24)
      • 23. Ding, F.: ‘Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling’, Appl. Math. Model., 2013, 37, pp. 16941704.
    25. 25)
      • 38. Li, H., Shi, Y., Yan, W.: ‘On neighbor information utilization in distributed receding horizon control for consensus-seeking’, IEEE Trans. Cybern., 2016, 46, (9), pp. 20192027.
    26. 26)
      • 5. Ding, F., Wang, X.H., Chen, Q.J., et al: ‘Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition’, Circuits Syst. Signal Process., 2016, 35, (9), pp. 33233338.
    27. 27)
      • 3. Xu, L.: ‘A proportional differential control method for a time-delay system using the Taylor expansion approximation’, Appl. Math. Comput., 2014, 236, pp. 391399.
    28. 28)
      • 29. Wang, D.Q., Zhang, W.: ‘Improved least squares identification algorithm for multivariable Hammerstein systems’, J. Franklin Inst., 2015, 352, (11), pp. 52925370.
    29. 29)
      • 20. Wang, Y.J., Ding, F.: ‘The filtering based iterative identification for multivariable systems’, IET Control Theory Appl., 2016, 10, (8), pp. 894902.
    30. 30)
      • 19. Wang, Y.J., Ding, F.: ‘Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model’, Automatica, 2016, 71, pp. 308313.
    31. 31)
      • 9. Ahmed, S., Huang, B., Shah, S.L.: ‘Novel identification method from step response’, Control Eng. Pract., 2007, 15, (5), pp. 545556.
    32. 32)
      • 7. Ralchenko, M., Svilans, M., Samson, C., et al: ‘Finite-difference time-domain modelling of through-the-Earth radio signal propagation’, Comput. Geosci., 2015, 85, pp. 184195.
    33. 33)
      • 24. Ding, F., Liu, G., Liu, X.P.: ‘Parameter estimation with scarce measurements’, Automatica, 2011, 47, (8), pp. 16461655.
    34. 34)
      • 22. Ding, F., Chen, T.: ‘Hierarchical least squares identification methods for multivariable systems’, IEEE Trans. Autom. Control, 2005, 50, (3), pp. 397402.
    35. 35)
      • 13. Aziz, M.H.R.A., Mohd-Mokhtar, R., Wang, L.: ‘Identification of step response estimates utilizing continuous time subspace approach’, J. Process Control, 2013, 23, (3), pp. 254270.
    36. 36)
      • 25. Wang, C., Zhu, L.: ‘Parameter identification of a class of nonlinear systems based on the multi-innovation identification theory’, J. Franklin Inst., 2015, 352, (10), pp. 46244637.
    37. 37)
      • 33. Pan, J., Yang, X.H., Cai, H.F., et al: ‘Image noise smoothing using a modified Kalman filter’, Neurocomputing, 2016, 173, pp. 16251629.
    38. 38)
      • 18. Xu, L.: ‘Application of the Newton iteration algorithm to the parameter estimation for dynamical systems’, J. Comput. Appl. Math., 2015, 288, pp. 3343.
    39. 39)
      • 27. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (Johns Hopkins University Press, Baltimore, MD, 1996, 3rd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0220
Loading

Related content

content/journals/10.1049/iet-spr.2016.0220
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address