Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal and accurate design of fractional-order digital differentiator – an evolutionary approach

This study deals with the implementation of highly accurate, stable, minimum phase, and wideband fractional-order digital differentiators (FODDs) in terms of infinite impulse response filters using an efficient evolutionary optimisation algorithm called adaptive Gbest-guided gravitational search algorithm (GGSA). Performance evaluation of GGSA as compared with real coded genetic algorithm (RGA), particle swarm optimisation (PSO), and differential evolution (DE) based designs are carried out in terms of different magnitude and phase response error metrics, solution quality reliability, and convergence speed. Simulation results clearly demonstrate that GGSA significantly outperforms RGA, PSO, and DE in consistently achieving the most accurate FODDs in a computationally efficient manner. The proposed FODDs also significantly outperform all state-of-the-art designs in terms of magnitude responses.

References

    1. 1)
      • 36. Feliu, V., Rattan, K.S., Brown, H.B.: ‘Adaptive control of a single-link flexible manipulator’, IEEE Control Syst. Mag., 1990, 10, (2), pp. 2933.
    2. 2)
      • 37. Rao, V.G., Bernstein, D.S.: ‘Naïve control of the double integrator’, IEEE Control Syst. Mag., 2001, 21, (5), pp. 8697.
    3. 3)
      • 30. Storn, R., Price, K.: ‘Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces’, J. Glob. Optim., 1997, 11, (4), pp. 341359.
    4. 4)
      • 31. Ababneh, J.I., Bataineh, M.H.: ‘Linear phase FIR filter design using particle swarm optimization and genetic algorithms’, Digital Signal Process., 2008, 18, (4), pp. 657668.
    5. 5)
      • 5. Oustaloup, A., Levron, F., Mathieu, B., et al: ‘Frequency-band complex noninteger differentiator: characterization and synthesis’, IEEE Trans. Circuits Syst. I, 2000, 47, (1), pp. 2539.
    6. 6)
      • 38. Debnath, L.: ‘Integral transforms and their applications’ (CRC Press, Boca Raton, FL, 1995).
    7. 7)
      • 14. Ferdi, Y.: ‘Computation of fractional order derivative and integral via power series expansion and signal modeling’, Nonlinear Dyn., 2006, 46, (1–2), pp. 115.
    8. 8)
      • 4. Podlubny, I.: ‘Fractional-order systems and PIλDμ –controllers’, IEEE Trans. Autom. Control, 1999, 44, (1), pp. 208214.
    9. 9)
      • 7. Benmalek, M., Charef, A.: ‘Digital fractional order operators for R-wave detection in electrocardiogram signal’, IET Signal Process., 2009, 3, (5), pp. 381391.
    10. 10)
      • 39. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, San Diego, 1999).
    11. 11)
      • 3. Engheta, N.: ‘On fractional calculus and fractional multipoles in electromagnetism’, IEEE Trans. Antennas Propag., 1996, 44, (4), pp. 554566.
    12. 12)
      • 25. Mirjalili, S., Lewis, A.: ‘Adaptive gbest-guided gravitational search algorithm’, Neural Comput. Appl., 2014, 25, (7), pp. 15691584.
    13. 13)
      • 12. Maione, G.: ‘A rational discrete approximation to the operator s0.5’, IEEE Signal Process. Lett., 2005, 13, (3), pp. 141144.
    14. 14)
      • 17. Gupta, M., Varshney, P., Visweswaran, G.S.: ‘Digital fractional-order differentiator and integrator models based on first-order and higher order operators’, Int. J. Circuit Theory Appl., 2011, 39, (5), pp. 461474.
    15. 15)
      • 27. Saha, S.K., Ghoshal, S.P., Kar, R., et al: ‘Cat swarm optimization algorithm for optimal linear phase FIR filter design’, ISA Trans., 2013, 52, (6), pp. 781794.
    16. 16)
      • 18. Romero, M., de Madrid, A.P., Manoso, C., et al: ‘IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory’, ISA Trans., 2013, 52, (4), pp. 461468.
    17. 17)
      • 6. Mathieu, B., Melchior, P., Oustaloup, A., et al: ‘Fractional differentiation for edge detection’, Signal Process., 2003, 83, (3), pp. 24212432.
    18. 18)
      • 32. Karaboga, N., Cetinkayal, B.: ‘Design of digital FIR filters using differential evolution algorithm’, Circuits Syst. Signal Process., 2006, 25, (5), pp. 649660.
    19. 19)
      • 23. Leulmi, F., Ferdi, Y.: ‘Improved digital rational approximation of the operator sα using second-order s-to-z transform and signal modeling’, Circuits Syst. Signal Process., 2015, 34, (6), pp. 18691891.
    20. 20)
      • 1. Oldham, K.B., Spanier, J.: ‘The fractional calculus’ (Academic Press, New York, 1974).
    21. 21)
      • 26. Saha, S.K., Kar, R., Mandal, D., et al: ‘Seeker optimization algorithm: application to the design of linear phase finite impulse response filter’, IET Signal Process., 2012, 6, (8), pp. 763771.
    22. 22)
      • 13. Barbosa, R.S., Machado, J.A.T., Silva, M.F.: ‘Time domain design of fractional differ integrators using least-squares’, Signal Process., 2006, 86, (10), pp. 25672581.
    23. 23)
      • 35. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions’ (Dover Publications, New York, 1974).
    24. 24)
      • 10. Chen, Y.Q., Moore, K.L.: ‘Discretization schemes for fractional-order differentiators and integrators’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2002, 49, (3), pp. 363367.
    25. 25)
      • 19. Maione, G.: ‘Closed-form rational approximations of fractional, analog and digital differentiators/integrators’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2013, 3, (3), pp. 322329.
    26. 26)
      • 16. Tseng, C.C., Lee, S.L.: ‘Design of fractional order digital differentiator using radial basis function’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2010, 57, (7), pp. 17081718.
    27. 27)
      • 9. Chen, Y.Q., Vinagre, B.M.: ‘A new IIR-type digital fractional order differentiator’, Signal Process., 2003, 83, (11), pp. 23592365.
    28. 28)
      • 24. Karaboga, N.: ‘A new design method based on artificial bee colony algorithm for digital IIR filters’, J. Franklin Inst., 2009, 346, (4), pp. 328348.
    29. 29)
      • 28. Goldberg, D.B.: ‘Genetic algorithms in search optimization and machine learning’ (Addison-Wesley, San Francisco, 1989).
    30. 30)
      • 21. Gupta, M., Yadav, R.: ‘New improved fractional order differentiator models based on optimized digital differentiators’, Sci. World J., 2014, 2014, pp. 111, article id – 741395.
    31. 31)
      • 33. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: ‘GSA: a gravitational search algorithm’, Inf. Sci., 2009, 179, (13), pp. 22322248.
    32. 32)
      • 8. Galvão, R.K.H., Hadjiloucas, S., Kienitz, K.H., et al: ‘Fractional order modeling of large three-dimensional RC networks’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (3), pp. 624637.
    33. 33)
      • 29. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, 1995, vol. 4, pp. 19421948.
    34. 34)
      • 15. Tseng, C.C.: ‘Improved design of digital fractional order differentiators using fractional sample delay’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2006, 53, (1), pp. 193203.
    35. 35)
      • 2. West, B.J., Bologna, M., Grigolini, P.: ‘Physics of fractal operators’ (Springer Verlag, New York, 2003).
    36. 36)
      • 22. Yadav, R., Gupta, M.: ‘Approximations of higher-order fractional differentiators and integrators using indirect discretization’, Turk. J. Electr. Eng. Comput. Sci., 2015, 23, pp. 666680.
    37. 37)
      • 20. Rana, K.P.S., Kumar, V., Garg, Y., et al: ‘Efficient design of discrete fractional order differentiators using Nelder-Mead simplex algorithm’, Circuits Syst. Signal Process., 2016, 35, (6), pp. 21552188.
    38. 38)
      • 34. Montgomery, D.C., Runger, G.C.: ‘Applied statistics and probability for engineers’ (John Wiley and Sons, Inc., 2003, 3rd edn.).
    39. 39)
      • 11. Vinagre, B.M., Chen, Y.Q., Petras, I.: ‘Two direct Tustin discretization methods for fractional-order differentiator/integrator’, J. Franklin Inst., 2003, 340, (5), pp. 349362.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0201
Loading

Related content

content/journals/10.1049/iet-spr.2016.0201
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address