http://iet.metastore.ingenta.com
1887

Adaptive master–slave unscented Kalman filter for grid voltage frequency estimation

Adaptive master–slave unscented Kalman filter for grid voltage frequency estimation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The frequency of the grid voltage is a time-varying parameter caused by mismatches between power generation and power consumption. In fact, the fundamental frequency decreases when large loads are connected to the system or when a large generation source goes offline. The opposite holds true for an increase in the fundamental frequency, e.g. when generation exceeds consumption. Hence, in order to protect a power system against loss of synchronism, under-frequency relaying, and power system stabilisation, accurate frequency estimation is necessary. This study proposes an adaptive algorithm based on a master–slave unscented Kalman filter (UKF) configuration to estimate both the voltage frequency and the measurement noise. Specifically, the master UKF uses the strong tracking filter condition to improve tracking accuracy, speed of convergence, and to desensitise the filter from initial conditions. The slave UKF uses the master UKF innovation to estimate the measurement noise covariance. The proposed approach addresses the tracking weaknesses of other frequency estimation algorithms when the frequency of the grid voltage waveform changes abruptly. Algorithm performance is measured through computer simulation.

References

    1. 1)
      • 1. Jones, D.: ‘Estimation of power system parameters’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 19801989.
    2. 2)
      • 2. Kamwa, I., Pradhan, A.K., Joos, G.: ‘Adaptive phasor and frequency- tracking schemes for wide-area protection and control’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 744753.
    3. 3)
      • 3. Roscoe, A.J., Burt, G.M., McDonald, J.R.: ‘Frequency and fundamental signal measurement algorithms for distributed control and protection applications’, IET Gen. Trans. Dist., 2009, 3, (5), pp. 485495.
    4. 4)
      • 4. Kusljevic, M.D.: ‘A simple recursive algorithm for simultaneous magnitude and frequency estimation’, IEEE Trans. Instrum. Measur., 2008, 57, (6), pp. 12071214.
    5. 5)
      • 5. Xia, Y., Douglas, S.C., Mandic, D.P.: ‘Adaptive frequency estimation in smart grid applications: exploiting noncircularity and widely linear adaptive estimators’, IEEE Signal Process. Mag., 2012, 29, (5), pp. 4454.
    6. 6)
      • 6. Hancke, G.P.: ‘The optimal frequency estimation of a noisy sinusoidal signal’, IEEE Trans. Instrum. Meas., 1990, 39, (6), pp. 843846.
    7. 7)
      • 7. Aghazadeh, R., Lesani, H., Sanaye-Pasand, M., et al: ‘New technique for frequency and amplitude estimation of power system signals’, IEE Proc. Gen. Trans. Dist., 2005, 152, (3), pp. 435440.
    8. 8)
      • 8. Park, S.Y., Song, Y.S., Kim, H.J., et al: ‘Improved method for frequency estimation of sampled sinusoidal signal without iteration’, IEEE Trans. Instrum. Meas., 2011, 60, (8), pp. 28282834.
    9. 9)
      • 9. Reza, M.S., Ciobotaru, M., Agelidis, V.G.: ‘A recursive DFT based technique for accurate estimation of grid voltage frequency’. Proc. of the IECON – 39th Annual Conf., 2013, pp. 64206425.
    10. 10)
      • 10. Ren, J., Kezunovic, M.: ‘A hybrid method for power system frequency estimation’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 12521259.
    11. 11)
      • 11. Fan, L., Qi, G.: ‘A new synthetic frequency estimation method of sinusoid based and interpolated FFT’. Proc. Fifth Int. Conf. on Instrumentation and Measurement, Computer, Communication and Control, 2015, pp. 17251729.
    12. 12)
      • 12. Pradhan, A.K., Routray, A., Basak, A.: ‘Power system frequency estimation using least mean square technique’, IEEE Trans. Power Deliv., 2005, 20, (3), pp. 18121816.
    13. 13)
      • 13. Kušljević, M.D.: ‘On LS-based power frequency estimation algorithms’, IEEE Trans. Instrum. Meas., 2013, 62, (7), pp. 20202028.
    14. 14)
      • 14. Xia, Y., Blazic, Z., Mandic, D.P.: ‘Complex-valued least squares frequency estimation for unbalanced power systems’, IEEE Trans. Instrum. Meas., 2015, 64, (3), pp. 638648.
    15. 15)
      • 15. Chudamani, R., Vasudevan, K., Ramalingam, C.S.: ‘Real-time estimation of power system frequency using nonlinear least squares’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 10211028.
    16. 16)
      • 16. Cheng, C.-I., Chang, G.W.: ‘An efficient prony-based solution procedure for tracking of power system voltage variations’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 26812688.
    17. 17)
      • 17. He, Z., Fu, L., Han, W., et al: ‘Precise algorithm for frequency estimation under dynamic and step-change conditions’, IET Sci. Meas. Technol., 2015, 9, (7), pp. 842851.
    18. 18)
      • 18. Hwang, J.K., Markham, P.N.: ‘Power system frequency estimation by reduction of noise using three digital filters’, IEEE Trans. Instrum. Meas., 2015, 63, (2), pp. 402409.
    19. 19)
      • 19. Yang, B., Peng, X.Y., Zheng, W.F., et al: ‘Optimal orthogonal subband fusion for online power system frequency estimation’, Electron. Lett., 2016, 52, (5), pp. 390392.
    20. 20)
      • 20. Xia, Y., Mandic, D.P.: ‘Widely linear adaptive frequency estimation of unbalanced three-phase power systems’, IEEE Trans. Instrum. Meas., 2012, 61, (1), pp. 7483.
    21. 21)
      • 21. Arulampalam, M.S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174188.
    22. 22)
      • 22. Ho, Y.C., Lee, R.C.K.: ‘A Bayesian approach to problems in stochastic estimation and control’, IEEE Trans. Autom. Control, 1964, 9, (4), pp. 333339.
    23. 23)
      • 23. Suwantong, R., Bertrand, S., Dumur, D., et al: ‘Stability analysis and robustness assessment of deterministic and stochastic moving horizon estimators’. IEEE 55th Conf. on Decision and Control, 2016, pp. 29002905.
    24. 24)
      • 24. Mallick, M., La Scala, B., Ristic, B., et al: ‘Comparison of filtering algorithms for ground target tracking using space-based GMTI radar’. 18th Int. Conf. on Information Fusion, 2015, pp. 16721679.
    25. 25)
      • 25. Wiltshire, R., Ledwich, G., O'Shea, P.: ‘A Kalman filtering approach to rapidly detecting modal changes in power systems’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 16981706.
    26. 26)
      • 26. Huang, C.-H., Lee, C.-H., Shih, K.-J., et al: ‘A robust technique for frequency estimation of distorted signals in power systems’, IEEE Trans. Instrum. Meas., 2010, 59, (8), pp. 20262036.
    27. 27)
      • 27. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    28. 28)
      • 28. Jian, Z., Swain, A., Nair, N.K.C., et al: ‘Estimation of power quality using an unscented Kalman filter’. TENCON 2007 – 2007 IEEE Region 10 Conf., 2007, pp. 14.
    29. 29)
      • 29. Regulski, P., Terzija, V.: ‘Estimation of frequency and fundamental power components using an unscented Kalman filter’, IEEE Trans. Instrum. Meas., 2012, 61, (4), pp. 952962.
    30. 30)
      • 30. Narasimhappa, M., Sabat, S.L., Nayak, J.: ‘Adaptive sampling strong tracking scaled unscented Kalman filter for denoising the fibre optic gyroscope drift signal’, IET Sci. Meas. Technol., 2015, 9, (3), pp. 241249.
    31. 31)
      • 31. Li, H.: ‘Applications of strong tracking filter in power system dynamic state estimation’. Proc. Int. Conf. on Sustainable Power Generation and Supply, 2012, pp. 15.
    32. 32)
      • 32. Andrieu, C., Doucet, A., Singh, S.S., et al: ‘Particle methods for change detection, system identification, and control’, Proc. IEEE, 2004, 92, (3), pp. 423438.
    33. 33)
      • 33. Martino, L., Read, J., Elvira, V., et al: ‘Cooperative parallel particle filters for on-line model selection and applications to urban mobility’, Digit. Signal Process., 2017, 60, pp. 172185.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0199
Loading

Related content

content/journals/10.1049/iet-spr.2016.0199
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address