HS remote sensing image restoration using fusion with MS images by EM algorithm

HS remote sensing image restoration using fusion with MS images by EM algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Remote sensing images are widely used for different areas from mineral exploration to agricultural applications and poor quality of hyperspectral (HS) images will directly have adverse effect on these applications. In this study, a method is proposed to restore degraded HS images. To achieve this aim, another multispectral (MS) observation of the same scene is supposed to be available and restoration is fulfilled by fusion of HS images and MS images. The proposed method gains maximum a posteriori estimation and is based on expectation maximisation algorithm. Deblurring and denoising are performed separately. Deblurring is done in spatial domain via non-overlapping blocks, whereas denoising is implemented in wavelet domain. To represent the coefficients in wavelet domain, instead of multinormal model, Gaussian scale mixture is exploited. The proposed method is validated on airborne visible/infrared imaging spectrometer (AVIRIS) and HS digital imagery collection experiment (HYDICE) databases and experimental results signify that the proposed method outperforms state-of-the-art techniques cited in the literature and signal-to-noise ratio is improved as much as 15.71 dB for Moffett database and 16.26 dB for HYDICE database.


    1. 1)
      • 1. Joseph, G.: ‘Fundamentals of remote sensing’ (Universities Press, 2005).
    2. 2)
      • 2. Chen, C.H.: ‘Wavelet-based multi/hyperspectral image restoration and fusion’, in Scheunders, P., Duijster, A.J., Zhang, Y. (EDs): ‘Signal, image processing for remote sensing’ (CRC Press, 2012).
    3. 3)
      • 3. Bioucas, D.J., Plaza, A., Camps, V.G., et al: ‘Hyperspectral remote sensing data analysis and future challenges’, IEEE Geosci. Remote Sens. Mag., 2013, 1, pp. 636.
    4. 4)
      • 4. Yokoya, N., Mayumi, N., Iwasaki, A.: ‘Cross-calibration for data fusion of EO-1/Hyperion and Terra/ASTER’, 2013.
    5. 5)
      • 5. Kalluri, H.R., Prasad, S., Bruce, L.M.: ‘Decision-level fusion of spectral reflectance and derivative information for robust hyperspectral land cover classification’, IEEE Trans. Geosci. Remote Sens., 2010, 48, pp. 40474058.
    6. 6)
      • 6. Alparone, L., Cappellini, V., Mortelli, L., et al: ‘A pyramid-based approach to multisensor image data fusion with preservation of spectral signatures’, Future Trends Remote Sens., Rotterdam, The Netherlands, Balkema, 1998.
    7. 7)
      • 7. Zhang, Y., Duijster, A., Scheunders, P.: ‘A Bayesian restoration approach for hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2012, 50, pp. 34533462.
    8. 8)
      • 8. Zhang, Y., Mei, S., He, M.: ‘Bayesian fusion of hyperspectral and multispectral images using Gaussian scale mixture prior’. 2011 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2011, pp. 25312534.
    9. 9)
      • 9. Chavez, P., Sides, S.C., Anderson, J.A.: ‘Comparison of three different methods to merge multiresolution and multispectral data-landsat TM and SPOT panchromatic’, Photogramm. Eng. Remote Sens., 1991, 57, pp. 295303.
    10. 10)
      • 10. Edwards, K., Davis, P.A.: ‘The use of intensity-hue-saturation transformation for producing color shaded-relief images’, Photogramm. Eng. Remote Sens., 1994, 60, pp. 13691374.
    11. 11)
      • 11. Alparone, S.B.L., Garzelli, A., Aiazzi, B.: ‘Context-driven fusion of high spatial and spectral resolution images based on oversampled multi-resolution analysis’, IEEE Trans. Geosci. Remote Sens., 2002, 10, pp. 23002312.
    12. 12)
      • 12. Wang, Z., Ziou, D., Armenakis, C., et al: ‘A comparative analysis of image fusion methods’, IEEE Trans. Geosci. Remote Sens., 2005, 43, pp. 13911402.
    13. 13)
      • 13. Duijster, A., Backer, S.D., Scheunders, P.: ‘Wavelet-based multicomponent image restoration’, Opt. East 2007, 2007, pp. 67630J67630J-10.
    14. 14)
      • 14. Bioucas-Dias, J.M.: ‘Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors’, IEEE Trans. Image Process., 2006, 15, pp. 937951.
    15. 15)
      • 15. Figueiredo, M.A., Bioucas-Dias, J.M., Nowak, R.D.: ‘Majorization–minimization algorithms for wavelet-based image restoration’, IEEE Trans. Image Process., 2007, 16, pp. 29802991.
    16. 16)
      • 16. Duijster, A., Scheunders, P., Backer, S.D.: ‘Wavelet-based EM algorithm for multispectral-image restoration’, IEEE Trans. Geosci. Remote Sens., 2009, 47, pp. 38923898.
    17. 17)
      • 17. Zhang, Y., Backer, S.D., Scheunders, P.: ‘Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2009, 47, pp. 38343843.
    18. 18)
      • 18. Scheunders, P., Backer, S.D.: ‘Wavelet denoising of multicomponent images using Gaussian scale mixture models and a noise-free image as priors’, IEEE Trans. Image Process., 2007, 16, pp. 18651872.
    19. 19)
      • 19. Figueiredo, M.A., Nowak, R.D.: ‘An EM algorithm for wavelet-based image restoration’, IEEE Trans. Image Process., 2003, 12, pp. 906916.
    20. 20)
      • 20. Hardie, R.C., Eismann, M.T., Wilson, G.L.: ‘MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor’, IEEE Trans. Image Process., 2004, 13, pp. 11741184.
    21. 21)
      • 21. Wei, Q., Dobigeon, N., Tourneret, J.-Y.: ‘Bayesian fusion of multi-band images’, IEEE J. Sel. Top. Signal Process., 2015, 9, pp. 11171127.
    22. 22)
      • 22. Yang, J., Wright, J., Huang, T.S., et al: ‘Image super-resolution via sparse representation’, IEEE Trans. Image Process., 2010, 19, pp. 28612873.
    23. 23)
      • 23. Zhao, Y., Yang, J., Zhang, Q., et al: ‘Hyperspectral imagery super-resolution by sparse representation and spectral regularization’, EURASIP J. Adv. Signal Process., 2011, 2011, pp. 110.
    24. 24)
      • 24. Yin, H., Li, S., Fang, L.: ‘Simultaneous image fusion and super-resolution using sparse representation’, Inf. Fusion, 2013, 14, pp. 229240.
    25. 25)
      • 25. Wei, Q., Bioucas-Dias, J., Dobigeon, N., et al: ‘Hyperspectral and multispectral image fusion based on a sparse representation’, IEEE Trans. Geosci. Remote Sens., 2015, 53, pp. 36583668.
    26. 26)
      • 26. Yuan, Q., Zhang, L., Shen, H.: ‘Hyperspectral image denoising employing a spectral–spatial adaptive total variation model’, IEEE Trans. Geosci. Remote Sens., 2012, 50, pp. 36603677.
    27. 27)
      • 27. Yuan, Q., Zhang, L., Shen, H.: ‘Hyperspectral image denoising with a spatial–spectral view fusion strategy’, IEEE Trans. Geosci. Remote Sens., 2014, 52, pp. 23142325.
    28. 28)
      • 28. Zhang, H., He, W., Zhang, L., et al: ‘Hyperspectral image restoration using low-rank matrix recovery’, IEEE Trans. Geosci. Remote Sens., 2014, 52, pp. 47294743.
    29. 29)
      • 29. Yang, J., Zhao, Y.-Q., Chan, J.C.-W., et al: ‘Coupled sparse denoising and unmixing with low-rank constraint for hyperspectral image’, IEEE Trans. Geosci. Remote Sens., 2015, 54, pp. 18181833.
    30. 30)
      • 30. Zhao, Y.-Q., Yang, J.: ‘Hyperspectral image denoising via sparse representation and low-rank constraint’, IEEE Trans. Geosci. Remote Sens., 2015, 53, pp. 296308.
    31. 31)
      • 31. Bernabe, S., Sanchez, S., Plaza, A., et al: ‘Hyperspectral unmixing on GPUs and multi-core processors: a comparison’, 2013, 6, pp. 13861398.
    32. 32)
      • 32. Liu, F., Seinstra, F.J., Plaza, A.: ‘Parallel hyperspectral image processing on distributed multicluster systems’, J. Appl. Remote Sens., 2011, 5, pp. 051501051501-14.
    33. 33)
      • 33. Kay, S.M.: ‘Fundamentals of statistical signal processing: detection theory’, 1998.
    34. 34)
      • 34. Duda, R.O., Hart, P.E., Stork, D.G.: ‘Pattern classification’ (John Wiley & Sons, 2012).
    35. 35)
      • 35. Daubechies, I.: ‘Ten lectures on wavelets’ (SIAM, 1992), vol. 61.
    36. 36)
      • 36. Portilla, J., Strela, V., Wainwright, M.J., et al: ‘Image denoising using scale mixtures of Gaussians in the wavelet domain’, IEEE Trans. Image Process., 2003, 12, pp. 13381351.
    37. 37)
      • 37. Karami, A., Yazdi, M., Mercier, G.: ‘Compression of hyperspectral images using discrete wavelet transform and tucker decomposition’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, pp. 444450.
    38. 38)
      • 38. Wainwright, M.J., Simoncelli, E.P., Willsky, A.S.: ‘Random cascades on wavelet trees and their use in analyzing and modeling natural images’, Appl. Comput. Harmon. Anal., 2001, 11, pp. 89123.
    39. 39)
      • 39. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, pp. 600612.

Related content

This is a required field
Please enter a valid email address