Wavelet DT method for water leak-detection using a vibration sensor: an experimental analysis

Wavelet DT method for water leak-detection using a vibration sensor: an experimental analysis

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose and analyse a novel leak-detection method based on the ‘Haar’ continuous wavelet transform (CWT) and a double thresholding, i.e. CWTDT. Inspired by the idea of the binary integration technique in radar target detection, the algorithm analyses the non-stationary vibration signal issued from a water pipeline through which it decides whether or not there exists a leak in the water conveyance. To achieve this, the signal is first divided into several segments. Partial binary decisions within each segment are then obtained through the use of two preselected thresholds. The final binary decision is obtained by means of the ‘K out of L’ fusion rule. In doing this, the hardware leak system prototype is designed and a number of desirable leak positions in the water pipeline are first created to achieve the two best thresholds and ‘K out of L’ fusion rule. For comparison purposes, the performances of the proposed CWTDT method are assessed experimentally against those of the existing fast Fourier transform- and CWT-based methods under real operating conditions.


    1. 1)
      • 1. Tang, X., Liu, Y., Zheng, L.: ‘Leak detection of water pipeline using wavelet transform and correlation method’, J. Environ. Technol. Eng., 2010, 3, (2), pp. 6267.
    2. 2)
      • 2. Claudia Deniss, E.A., Garza, C., Eduardo, L., et al: ‘Multi-leak detection with wavelet analysis in water distribution networks’. IEEE Mediterranean Conf. on Control & Automation, Barcelona, Spain, 3–6 July 2012, pp. 11551160.
    3. 3)
      • 3. Zhang, L., Wu, Y., Guo, L., et al: ‘Design and implementation of leak acoustic signal correlator for water pipelines’, Inf. Technol. J. , 2013, 12, (11), pp. 21952200.
    4. 4)
      • 4. Nasirian, A., Maghrebi, M.F., Yazdani, S.: ‘Leakage detection in water distribution network based on a new heuristic genetic algorithm model’, J. Water Resour. Prot., 2013, 5, (3), pp. 294303.
    5. 5)
      • 5. Martini, A., Troncossi, M., Rivola, A.: ‘Automatic leak detection in buried plastic pipes of water supply networks by means of vibration measurements’, Shock Vib., 2015, 2015 (2015), pp. 113.
    6. 6)
      • 6. Cataldo, A., Cannazza, G., Benedetto, E.D., et al: ‘A new method for detecting leaks in underground water pipelines’, IEEE Sens. J., 2012, 12, (6), pp. 16601667.
    7. 7)
      • 7. Yang, J., Yumei, W., Ping, L.: ‘Leak acoustic detection in water distribution pipelines’. Seventh World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008, pp. 30573061.
    8. 8)
      • 8. Ekuakille, A.L., Vendramin, G., Trotta, A., et al: ‘STFT-based spectral analysis of urban waterworks leakage detection’. XIX Imeko World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 September 2009, pp. 21722176.
    9. 9)
      • 9. Lay-Ekuakille, A., Trotta, A., Vendramin, G.: ‘FFT-based spectral response for smaller pipeline leak detection’. IEEE Int. Instrumentation and Measurement Technology Conf., Singapore, 5–7 May 2009, pp. 328331.
    10. 10)
      • 10. Lay-Ekuakille, A., Vendramin, G., Trotta, A.: ‘Robust spectral leak detection of complex pipelines using filter diagonalization method’, IEEE Sens. J., 2009, 9, (11), pp. 16051614.
    11. 11)
      • 11. Gao, Y., Brennan, M.J., Joseph, P.F.: ‘A comparison of time delay estimators for the detection of leak noise signals in plastic water distribution pipes’, J. Sound Vib., 2006, 292, (3–5), pp. 552570.
    12. 12)
      • 12. Hunaidi, O., Chu, W., Wang, A., et al: ‘Detecting leaks in plastic pipes’, J. Am. Water Works Assoc., 2000, 92, (2), pp. 8294.
    13. 13)
      • 13. Ahadi, M., Bakhtiar, M.S.: ‘Leak detection in water filled plastic pipes through the application of tuned wavelet transforms to acoustic emission signals’, Appl. Acoust. J., 2010, 71, (7), pp. 634639.
    14. 14)
      • 14. Taghvaei, M., Beck, S.B.M., Staszewski, W.J.: ‘Leak detection in pipelines using cepstrum analysis’, J. Meas. Sci. Technol., 2006, 17, (2), pp. 367372.
    15. 15)
      • 15. Caron, D.: ‘Détectabilité des fuites par émission acoustique’, Tech. Ing., 2004, r2057, pp. 113.
    16. 16)
      • 16. Sarrate, R., Blesa, J., Nejjari, F., et al: ‘Sensor placement for leak detection and location in water distribution networks’. Seventh IWA Int. Conf. on Efficient Use and Management of Water (Efficient 2013), Paris, France, 22–25 October 2013, pp. 110.
    17. 17)
      • 17. Chuanhu, G.E., Hongying, Y., Hao, Y., et al: ‘A fast leak locating method based on wavelet transform’, J. Tsinghua Sci. Technol., 2009, 14, (5), pp. 551555.
    18. 18)
      • 18. Mezache, A., Soltani, F.: ‘Threshold optimization of decentralized CFAR detection in Weibull clutter using genetic algorithms’, Signal Image Video Process., 2008, 2, (1), pp. 17.
    19. 19)
      • 19. Addison, P.S.: ‘Wavelet transforms and the ECG: a review’, Physiol. Meas., 2005, 26, (5), pp. 155199.
    20. 20)
      • 20. Aggarwal, R., Singh, J.K., Gupta, V.K., et al: ‘Noise reduction of speech signal using wavelet transform with modified universal threshold’, Int. J. Comput. Appl., 2011, 20, (5), pp. 1419.
    21. 21)
      • 21. Santos, R.B., de Almeida, W.S., da Silva, F.V, et al: ‘Spectral analysis for detection of leaks in pipes carrying compressed air’, Chem. Eng. Trans., 2013, 32, pp. 13631368.
    22. 22)
      • 22. Brunner, A.J., Barbezat, M.: ‘Acoustic emission monitoring of leaks in pipes for transport of liquid and gaseous media: a model experiment’, Adv. Mater. Res., 2006, 13, (14), pp. 351356.
    23. 23)
      • 23. Barkat, M., Varshney, P.K.: ‘Adaptive cell-averaging CFAR detection in distributed sensor networks’, IEEE Trans. Aerosp. Electron. Syst., 1991, 27, (3), pp. 424429.
    24. 24)
      • 24. Gini, F., Lombardini, F., Verrazzani, L.: ‘Decentralized CFAR detection with binary integration in Weibull clutter’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (2), pp. 396407.
    25. 25)
      • 25. Lee, B.Y., Tarng, Y.S.: ‘Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current’, Int. J. Adv. Manuf. Technol., 1999, 15, (4), pp. 238243.
    26. 26)
      • 26. Donoho, D.L.: ‘De-noising by soft thresholding’, IEEE Trans. Inf. Theory, 1995, 41, (3), pp. 613627.
    27. 27)
      • 27. Aggarwal, R., Singh, J.K., Rathore, S., et al: ‘Noise reduction of speech signal using wavelet transform with modified universal threshold’, Int. J. Comput. Appl., 2011, 20, (5), pp. 09758887.

Related content

This is a required field
Please enter a valid email address