Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Acoustic vector sensor: reviews and future perspectives

Acoustic vector sensor (AVS) has been recently researched and developed for acoustic wave capturing and signal processing. Conventional array generally employs spatially displayed sensors for signal enhancement, source localisation, target tracking, etc. However, the large size usually limits its implementations on some portable devices. AVS which generally includes one omni-directional sensor and three orthogonally co-located directional sensors has been recently introduced. An AVS is able to provide the four-dimensional information of sound field in space: the acoustic pressure and its three-dimensional particle velocities. A compact assembled AVS could be as small as a match head and the weight can be <50 g. Benefits from these properties, AVS tends to be more attractive for exploitation and commercialisation than conventional sensor array. To have a well understanding of the research progress on AVS, an overview on its recent developments is first given in this study. Then, discussions of challenges on AVS and extensions on its possible future prospects are presented.

References

    1. 1)
      • 33. Va, J., Ramrez, D., Santamara, I.: ‘Properness and widely linear processing of quaternion random vectors’, IEEE Trans. Inf. Theory, 2010, 56, (7), pp. 35023515.
    2. 2)
      • 55. Hamilton, W.R.: ‘Elements of quaternions’ (Long-mans, Green, & Company, London, UK, 1899, 2nd ed.).
    3. 3)
      • 4. Hawkes, M., Nehorai, A.: ‘Acoustic vector-sensor beamforming and Capon direction estimation’, IEEE Trans. Signal Process., 1998, 46, (9), pp. 22912304.
    4. 4)
      • 45. Cao, J., Lai, X.: ‘MVDR beamformer analysis of acoustic vector sensor with single directional interference’. Proc. of 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS2016), Montreal, Canada, 22–25 May 2016.
    5. 5)
      • 11. Levin, D., Gannot, S., Habets, E.A.P.: ‘Direction-of-arrival estimation using acoustic vector sensors in the present of noise’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2011, pp. 105108.
    6. 6)
      • 51. Elko, G.W.: ‘Microphone array systems for hands-free telecommunication’, Speech Commun., 1996, 20, (3–4), pp. 229240.
    7. 7)
      • 26. Le Bihan, N., Mars, J.: ‘Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing’, Signal Process., 2004, 84, (7), pp. 11771199.
    8. 8)
      • 40. Greenberg, J.E., Desloge, J.G., Zurek, P.M.: ‘Evaluation of array-processing algorithms for a headband hearing aid’, J. Acoust. Soc. Am., 2003, 113, pp. 16461657.
    9. 9)
      • 48. Jot, J.: ‘Interactive 3D audio rendering in flexible playback configurations’. 2012 Asia-Pacific Signal Information Processing Association Annual Summit Conf. (APSIPA ASC), 2012, pp. 19.
    10. 10)
      • 49. Sabine, W.C.: ‘Collected papers on acoustics’ (Dover Publications, New York, 1965).
    11. 11)
      • 20. Awad, M., Wong, K.: ‘Recursive least-squares source tracking using one acoustic vector sensor’, IEEE Trans. Aero. Electr. Syst., 2012, 48, (4), pp. 30733083.
    12. 12)
      • 35. Szurley, J., Bertrand, A., Moonen, M.: ‘On the use of time-domain widely linear filtering for binaural speech enhancement’, IEEE Signal Process. Lett., 2013, 20, (7), pp. 649652.
    13. 13)
      • 54. Huang, Y., Benesty, J., Chen, J.: ‘Optimal step size of the adaptive multichannel LMS algorithm for blind SIMO identification’, IEEE Signal Process. Lett., 2005, 12, (3), pp. 173176.
    14. 14)
      • 52. Affes, S., Grenier, Y.: ‘A signal subspace tracking algorithm for microphone array processing of speech’, IEEE Trans. Speech Audio Process., 1997, 5, (5), pp. 425437.
    15. 15)
      • 53. Habets, E.A.P.: ‘Multi-channel speech dereverberation based on a statistical model of late reverberation’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2005, pp. iv/173iv/176.
    16. 16)
      • 6. Hawkes, M., Nehorai, A.: ‘Acoustic vector-sensor correlations in ambient noise’, IEEE Trans. Signal Process., 2001, 26, (3), pp. 337347.
    17. 17)
      • 2. Habets, E.A.P., Benesty, J., Cohen, I., et al: ‘New insights into the MVDR beamformer in room acoustics’, IEEE Trans. Audio Speech Signal Process., 2010, 18, (1), pp. 158170.
    18. 18)
      • 17. Liu, Z., Ruan, X., He, J.: ‘Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array’, Multidim. Syst. Sign. Process., 2013, 24, pp. 105120.
    19. 19)
      • 1. McCowan, I., Bourlard, H.: ‘Microphone array post-filter based on noise field coherence’, IEEE Trans. Speech Audio Process., 2003, 11, (6), pp. 709716.
    20. 20)
      • 16. Chen, H., Zhao, J.: ‘Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources’, Signal Process., 2005, 85, pp. 837847.
    21. 21)
      • 42. Ephraim, Y., Malah, D.: ‘Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator’, IEEE Trans. Speech Audio Process., 1984, 32, (6), pp. 11091121.
    22. 22)
      • 24. Zhong, X., Premkumar, A., Madhukumar, A.: ‘Particle filtering and posterior Cramér-Rao bound for 2-D direction of arrival tracking using an acoustic vector sensor’, IEEE Sens. J., 2012, 12, (2), pp. 363377.
    23. 23)
      • 13. Levin, D., Habets, E.A.P., Gannot, S.: ‘On the angular error of intensity vector based direction of arrival estimation in reverberant sound fields’, J. Acoust. Soc. Am., 2010, 128, (4), pp. 18001811.
    24. 24)
      • 41. Link, M.J., Buckley, K.M.: ‘Prewhitening for intelligibility gain in hearing aid arrays’, J. Acoust. Soc. Am., 1993, 93, pp. 21392145.
    25. 25)
      • 21. Zhong, X., Premkumar, A., Madhukumar, A., et al: ‘Multi-modality likelihood based particle filtering for 2-D direction of arrival tracking using a single acoustic vector sensor’. Proc. IEEE Int. Conf. Multi Expo, 2011, pp. 16.
    26. 26)
      • 43. Martin, R.: ‘Noise power spectral density estimation based on optimal smoothing and minimum statistics’, IEEE Trans. Speech Audio Process., 2001, 9, (5), pp. 504512.
    27. 27)
      • 3. Nehorai, A., Paldi, E.: ‘Acoustic vector-sensor array processing’, IEEE Trans. Signal Process., 1994, 42, (9), pp. 24812491.
    28. 28)
      • 18. Zhang, X., Zhou, M., Chen, H., et al: ‘Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC’, Multidimens. Syst. Sign. Process., 2014, 25, pp. 583600.
    29. 29)
      • 50. Habets, E.A.P.: ‘Room impulse response generator’. Tech. Rep, Technische Universiteit Eindhoven, 2006.
    30. 30)
      • 8. Lockwood, M.E., Jones, D.L., Su, Q., et al: ‘Beamforming with collocated microphone arrays’, J. Acoust. Soc. Am., 2003, 114, (4), pp. 24512451.
    31. 31)
      • 22. Zhong, X., Premkumar, A.: ‘Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor’, IEEE Trans. Signal Process., 2012, 60, (9), pp. 47194733.
    32. 32)
      • 37. Lockwood, M.E., Jones, D.L., Bilger, R.C., et al: ‘Performance of time- and frequency-domain binaural beamformers based on recorded signals from real rooms’, J. Acoust. Soc. Am., 2004, 115, pp. 379391.
    33. 33)
      • 47. Naylor, P.A., Gaubitch, N.D.: ‘Speech dereverberation’. Signals and Communication Technology Series, Springer-Verlag London Limited, 2010.
    34. 34)
      • 31. Mandic, D.P., Jahanchahi, C., Took, C.C.: ‘A quaternion gradient operator and its applications’, IEEE Signal Process. Lett., 2011, 18, (1), pp. 4750.
    35. 35)
      • 44. Gerkmann, T., Hendriks, R.C.: ‘Unbiased MMSE-based noise power estimation with low complexity and low tracking delay’, IEEE Trans. Audio Speech Signal Process., 2012, 20, pp. 13831393.
    36. 36)
      • 32. Jahanchahi, C., Took, C.C., Mandic, D.P.: ‘On gradient calculation in quaternion adaptive filtering’. Proc. IEEE Int. Conf. Audio, Speech and Signal Processing, 2012, pp. 37733776.
    37. 37)
      • 38. Wu, S.Q., Zhang, J.Y.: ‘A new robust beamforming method with antennae calibration errors’. Proc. IEEE Wireless Communication Network Conf., 1999, vol. 2, pp. 869872.
    38. 38)
      • 12. Levin, D., Habets, E.A.P., Gannot, S.: ‘Maximum likelihood estimation of direction of arrival using an acoustic vector sensor’, J. Acoust. Soc. Am., 2012, 131, (2), pp. 12401248.
    39. 39)
      • 29. Chen, J., Benesty, J.: ‘On the time-domain widely linear LCMV filter for noise reduction with a stereo set system’, IEEE Trans. Audio Speech Signal Process., 2013, 21, (7), pp. 13431354.
    40. 40)
      • 23. Zhong, X., Premkumar, A.: ‘Multiple wideband source detection and tracking using a distributed acoustic vector sensor array: a random finite set approach’, Signal Process., 2014, 94, (12), pp. 583594.
    41. 41)
      • 14. Cao, J.: ‘Survey on acoustic vector sensor and its applications in signal processing’. Proc. The 33rd Chinese Control Conf., Nanjing, China, 2014, pp. 74567461.
    42. 42)
      • 9. Lockwood, M.E., Jones, D.L.: ‘Beamformer performance with acoustic vector sensor in air’, J. Acoust. Soc. Am., 2005, 119, (1), pp. 608619.
    43. 43)
      • 39. Greenberg, J.E.: ‘Modified LMS algorithms for speech processing with an adaptive noise canceller’, IEEE Trans. Speech Audio Process., 1998, 6, pp. 338351.
    44. 44)
      • 7. Mohan, S., Kramer, M.L., Wheeler, B.C., et al: ‘Localization of nonstationary sources using a coherence test’. Proc. Statistical Signal Processing, 2003, pp. 470473.
    45. 45)
      • 25. Jin, Y., Liu, X., Hu, Z., et al: ‘DOA estimation of moving sound sources in the context of nonuniform spatial noise using acoustic vector sensor’, Multidim. Syst. Sign. Process., 2014, 26, (1), pp. 31336.
    46. 46)
      • 10. Zou, Y., Wang, P., Wang, Y., et al: ‘Speech enhancement with an acoustic vector sensor: an effective adaptive beamforming and post-filtering approach’, EURASIP J. Audio Speech Music Process., 2014, 17, pp. 112.
    47. 47)
      • 34. Tao, J., Chang, W.: ‘The MVDR beamformer based on hypercomplex processes’. Proc. of Int. Conf. on Computer Science and Electronics Engineering, 2012, pp. 273277.
    48. 48)
      • 57. Sangwine, S., Le Bihan, N.: ‘Quaternion toolbox QTFM for Matlab’. Available at http://qtfm.sourceforge.net/ accessed 6 June 2006.
    49. 49)
      • 27. Took, C.C., Mandic, D.P.: ‘The quaternion LMS algorithm for adaptive filtering of hypercomplex process’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 13161327.
    50. 50)
      • 19. Shujau, M., Ritz, C., Burnett, I.: ‘Using in-air acoustic vector sensors for tracking moving speakers’. Proc. the 4th Int. Conf. Signal Processing Communication Syst., 2010, pp. 15.
    51. 51)
      • 30. Took, C.C., Mandic, D.P.: ‘A quaternion widely linear adaptive filter’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 44274431.
    52. 52)
      • 5. Hawkes, M., Nehorai, A.: ‘Acoustic vector-sensor processing in the presence of a reflecting boundary’, IEEE Trans. Signal Process., 2000, 48, (11), pp. 29812993.
    53. 53)
      • 46. Godara, L.C.: ‘Smart antennas’ (CRC Press, 2004).
    54. 54)
      • 15. Hawkes, M., Nehorai, A.: ‘Wideband source localization using a distributed acoustic vector-sensor array’, IEEE Trans. Signal Process., 2003, 51, (6), pp. 14791491.
    55. 55)
      • 56. Cao, J., Khong, A.W.H., Gannot, S.: ‘On the performance of widely linear Quaternion based MVDR beamformer for an acoustic vector sensor’. The Int. Workshop Acoustics Signal Enhancement (IWAENC 2014), Juan les Pins, French Riviera, 2014, pp. 304308.
    56. 56)
      • 28. Stanciu, C., Benesty, J., Paleologu, C., et al: ‘A widely linear model for stereophonic acoustic echo cancellation’, Signal Process., 2013, 93, (2), pp. 511516.
    57. 57)
      • 36. Schmidt, R.: ‘Multiple emitter and signal parameter estimation’. Proc. of RADC Spectral Estimation Workshop, 1979, pp. 243258.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0111
Loading

Related content

content/journals/10.1049/iet-spr.2016.0111
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address