http://iet.metastore.ingenta.com
1887

access icon free Acoustic vector sensor: reviews and future perspectives

Loading full text...

Full text loading...

/deliver/fulltext/iet-spr/11/1/IET-SPR.2016.0111.html;jsessionid=2i78d88wbni5o.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-spr.2016.0111&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. McCowan, I., Bourlard, H.: ‘Microphone array post-filter based on noise field coherence’, IEEE Trans. Speech Audio Process., 2003, 11, (6), pp. 709716.
    2. 2)
      • 2. Habets, E.A.P., Benesty, J., Cohen, I., et al: ‘New insights into the MVDR beamformer in room acoustics’, IEEE Trans. Audio Speech Signal Process., 2010, 18, (1), pp. 158170.
    3. 3)
      • 3. Nehorai, A., Paldi, E.: ‘Acoustic vector-sensor array processing’, IEEE Trans. Signal Process., 1994, 42, (9), pp. 24812491.
    4. 4)
      • 4. Hawkes, M., Nehorai, A.: ‘Acoustic vector-sensor beamforming and Capon direction estimation’, IEEE Trans. Signal Process., 1998, 46, (9), pp. 22912304.
    5. 5)
      • 5. Hawkes, M., Nehorai, A.: ‘Acoustic vector-sensor processing in the presence of a reflecting boundary’, IEEE Trans. Signal Process., 2000, 48, (11), pp. 29812993.
    6. 6)
      • 6. Hawkes, M., Nehorai, A.: ‘Acoustic vector-sensor correlations in ambient noise’, IEEE Trans. Signal Process., 2001, 26, (3), pp. 337347.
    7. 7)
      • 7. Mohan, S., Kramer, M.L., Wheeler, B.C., et al: ‘Localization of nonstationary sources using a coherence test’. Proc. Statistical Signal Processing, 2003, pp. 470473.
    8. 8)
      • 8. Lockwood, M.E., Jones, D.L., Su, Q., et al: ‘Beamforming with collocated microphone arrays’, J. Acoust. Soc. Am., 2003, 114, (4), pp. 24512451.
    9. 9)
      • 9. Lockwood, M.E., Jones, D.L.: ‘Beamformer performance with acoustic vector sensor in air’, J. Acoust. Soc. Am., 2005, 119, (1), pp. 608619.
    10. 10)
      • 10. Zou, Y., Wang, P., Wang, Y., et al: ‘Speech enhancement with an acoustic vector sensor: an effective adaptive beamforming and post-filtering approach’, EURASIP J. Audio Speech Music Process., 2014, 17, pp. 112.
    11. 11)
      • 11. Levin, D., Gannot, S., Habets, E.A.P.: ‘Direction-of-arrival estimation using acoustic vector sensors in the present of noise’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2011, pp. 105108.
    12. 12)
      • 12. Levin, D., Habets, E.A.P., Gannot, S.: ‘Maximum likelihood estimation of direction of arrival using an acoustic vector sensor’, J. Acoust. Soc. Am., 2012, 131, (2), pp. 12401248.
    13. 13)
      • 13. Levin, D., Habets, E.A.P., Gannot, S.: ‘On the angular error of intensity vector based direction of arrival estimation in reverberant sound fields’, J. Acoust. Soc. Am., 2010, 128, (4), pp. 18001811.
    14. 14)
      • 14. Cao, J.: ‘Survey on acoustic vector sensor and its applications in signal processing’. Proc. The 33rd Chinese Control Conf., Nanjing, China, 2014, pp. 74567461.
    15. 15)
      • 15. Hawkes, M., Nehorai, A.: ‘Wideband source localization using a distributed acoustic vector-sensor array’, IEEE Trans. Signal Process., 2003, 51, (6), pp. 14791491.
    16. 16)
      • 16. Chen, H., Zhao, J.: ‘Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources’, Signal Process., 2005, 85, pp. 837847.
    17. 17)
      • 17. Liu, Z., Ruan, X., He, J.: ‘Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array’, Multidim. Syst. Sign. Process., 2013, 24, pp. 105120.
    18. 18)
      • 18. Zhang, X., Zhou, M., Chen, H., et al: ‘Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC’, Multidimens. Syst. Sign. Process., 2014, 25, pp. 583600.
    19. 19)
      • 19. Shujau, M., Ritz, C., Burnett, I.: ‘Using in-air acoustic vector sensors for tracking moving speakers’. Proc. the 4th Int. Conf. Signal Processing Communication Syst., 2010, pp. 15.
    20. 20)
      • 20. Awad, M., Wong, K.: ‘Recursive least-squares source tracking using one acoustic vector sensor’, IEEE Trans. Aero. Electr. Syst., 2012, 48, (4), pp. 30733083.
    21. 21)
      • 21. Zhong, X., Premkumar, A., Madhukumar, A., et al: ‘Multi-modality likelihood based particle filtering for 2-D direction of arrival tracking using a single acoustic vector sensor’. Proc. IEEE Int. Conf. Multi Expo, 2011, pp. 16.
    22. 22)
      • 22. Zhong, X., Premkumar, A.: ‘Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor’, IEEE Trans. Signal Process., 2012, 60, (9), pp. 47194733.
    23. 23)
      • 23. Zhong, X., Premkumar, A.: ‘Multiple wideband source detection and tracking using a distributed acoustic vector sensor array: a random finite set approach’, Signal Process., 2014, 94, (12), pp. 583594.
    24. 24)
      • 24. Zhong, X., Premkumar, A., Madhukumar, A.: ‘Particle filtering and posterior Cramér-Rao bound for 2-D direction of arrival tracking using an acoustic vector sensor’, IEEE Sens. J., 2012, 12, (2), pp. 363377.
    25. 25)
      • 25. Jin, Y., Liu, X., Hu, Z., et al: ‘DOA estimation of moving sound sources in the context of nonuniform spatial noise using acoustic vector sensor’, Multidim. Syst. Sign. Process., 2014, 26, (1), pp. 31336.
    26. 26)
      • 26. Le Bihan, N., Mars, J.: ‘Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing’, Signal Process., 2004, 84, (7), pp. 11771199.
    27. 27)
      • 27. Took, C.C., Mandic, D.P.: ‘The quaternion LMS algorithm for adaptive filtering of hypercomplex process’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 13161327.
    28. 28)
      • 28. Stanciu, C., Benesty, J., Paleologu, C., et al: ‘A widely linear model for stereophonic acoustic echo cancellation’, Signal Process., 2013, 93, (2), pp. 511516.
    29. 29)
      • 29. Chen, J., Benesty, J.: ‘On the time-domain widely linear LCMV filter for noise reduction with a stereo set system’, IEEE Trans. Audio Speech Signal Process., 2013, 21, (7), pp. 13431354.
    30. 30)
      • 30. Took, C.C., Mandic, D.P.: ‘A quaternion widely linear adaptive filter’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 44274431.
    31. 31)
      • 31. Mandic, D.P., Jahanchahi, C., Took, C.C.: ‘A quaternion gradient operator and its applications’, IEEE Signal Process. Lett., 2011, 18, (1), pp. 4750.
    32. 32)
      • 32. Jahanchahi, C., Took, C.C., Mandic, D.P.: ‘On gradient calculation in quaternion adaptive filtering’. Proc. IEEE Int. Conf. Audio, Speech and Signal Processing, 2012, pp. 37733776.
    33. 33)
      • 33. Va, J., Ramrez, D., Santamara, I.: ‘Properness and widely linear processing of quaternion random vectors’, IEEE Trans. Inf. Theory, 2010, 56, (7), pp. 35023515.
    34. 34)
      • 34. Tao, J., Chang, W.: ‘The MVDR beamformer based on hypercomplex processes’. Proc. of Int. Conf. on Computer Science and Electronics Engineering, 2012, pp. 273277.
    35. 35)
      • 35. Szurley, J., Bertrand, A., Moonen, M.: ‘On the use of time-domain widely linear filtering for binaural speech enhancement’, IEEE Signal Process. Lett., 2013, 20, (7), pp. 649652.
    36. 36)
      • 36. Schmidt, R.: ‘Multiple emitter and signal parameter estimation’. Proc. of RADC Spectral Estimation Workshop, 1979, pp. 243258.
    37. 37)
      • 37. Lockwood, M.E., Jones, D.L., Bilger, R.C., et al: ‘Performance of time- and frequency-domain binaural beamformers based on recorded signals from real rooms’, J. Acoust. Soc. Am., 2004, 115, pp. 379391.
    38. 38)
      • 38. Wu, S.Q., Zhang, J.Y.: ‘A new robust beamforming method with antennae calibration errors’. Proc. IEEE Wireless Communication Network Conf., 1999, vol. 2, pp. 869872.
    39. 39)
      • 39. Greenberg, J.E.: ‘Modified LMS algorithms for speech processing with an adaptive noise canceller’, IEEE Trans. Speech Audio Process., 1998, 6, pp. 338351.
    40. 40)
      • 40. Greenberg, J.E., Desloge, J.G., Zurek, P.M.: ‘Evaluation of array-processing algorithms for a headband hearing aid’, J. Acoust. Soc. Am., 2003, 113, pp. 16461657.
    41. 41)
      • 41. Link, M.J., Buckley, K.M.: ‘Prewhitening for intelligibility gain in hearing aid arrays’, J. Acoust. Soc. Am., 1993, 93, pp. 21392145.
    42. 42)
      • 42. Ephraim, Y., Malah, D.: ‘Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator’, IEEE Trans. Speech Audio Process., 1984, 32, (6), pp. 11091121.
    43. 43)
      • 43. Martin, R.: ‘Noise power spectral density estimation based on optimal smoothing and minimum statistics’, IEEE Trans. Speech Audio Process., 2001, 9, (5), pp. 504512.
    44. 44)
      • 44. Gerkmann, T., Hendriks, R.C.: ‘Unbiased MMSE-based noise power estimation with low complexity and low tracking delay’, IEEE Trans. Audio Speech Signal Process., 2012, 20, pp. 13831393.
    45. 45)
      • 45. Cao, J., Lai, X.: ‘MVDR beamformer analysis of acoustic vector sensor with single directional interference’. Proc. of 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS2016), Montreal, Canada, 22–25 May 2016.
    46. 46)
      • 46. Godara, L.C.: ‘Smart antennas’ (CRC Press, 2004).
    47. 47)
      • 47. Naylor, P.A., Gaubitch, N.D.: ‘Speech dereverberation’. Signals and Communication Technology Series, Springer-Verlag London Limited, 2010.
    48. 48)
      • 48. Jot, J.: ‘Interactive 3D audio rendering in flexible playback configurations’. 2012 Asia-Pacific Signal Information Processing Association Annual Summit Conf. (APSIPA ASC), 2012, pp. 19.
    49. 49)
      • 49. Sabine, W.C.: ‘Collected papers on acoustics’ (Dover Publications, New York, 1965).
    50. 50)
      • 50. Habets, E.A.P.: ‘Room impulse response generator’. Tech. Rep, Technische Universiteit Eindhoven, 2006.
    51. 51)
      • 51. Elko, G.W.: ‘Microphone array systems for hands-free telecommunication’, Speech Commun., 1996, 20, (3–4), pp. 229240.
    52. 52)
      • 52. Affes, S., Grenier, Y.: ‘A signal subspace tracking algorithm for microphone array processing of speech’, IEEE Trans. Speech Audio Process., 1997, 5, (5), pp. 425437.
    53. 53)
      • 53. Habets, E.A.P.: ‘Multi-channel speech dereverberation based on a statistical model of late reverberation’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2005, pp. iv/173iv/176.
    54. 54)
      • 54. Huang, Y., Benesty, J., Chen, J.: ‘Optimal step size of the adaptive multichannel LMS algorithm for blind SIMO identification’, IEEE Signal Process. Lett., 2005, 12, (3), pp. 173176.
    55. 55)
      • 55. Hamilton, W.R.: ‘Elements of quaternions’ (Long-mans, Green, & Company, London, UK, 1899, 2nd ed.).
    56. 56)
      • 56. Cao, J., Khong, A.W.H., Gannot, S.: ‘On the performance of widely linear Quaternion based MVDR beamformer for an acoustic vector sensor’. The Int. Workshop Acoustics Signal Enhancement (IWAENC 2014), Juan les Pins, French Riviera, 2014, pp. 304308.
    57. 57)
      • 57. Sangwine, S., Le Bihan, N.: ‘Quaternion toolbox QTFM for Matlab’. Available at http://qtfm.sourceforge.net/ accessed 6 June 2006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0111
Loading

Related content

content/journals/10.1049/iet-spr.2016.0111
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address