http://iet.metastore.ingenta.com
1887

Low-complexity technique to get arbitrary variation in the bandwidth of a digital FIR filter

Low-complexity technique to get arbitrary variation in the bandwidth of a digital FIR filter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A digital filter is an essential structure in present day electronic devices. There is a variety of applications which demands tunability of digital filters in terms of bandwidth. It is desirable to have simple design process and minimum possible overhead in hardware implementation. A set of very low order subfilters derived from Farrow structure is proposed to function as a sample rate converter on the input signal. A fixed bandwidth low pass filter is placed in between these interpolator structures, resulting in a continuously variable bandwidth filter (CVF). This hardware efficient CVF architecture helps to achieve the tunability without altering the coefficients and the underlying structure. This model obtains a continuous variation in bandwidth employing a single sample rate change factor. Very low complexity and easy tunability of this technique are highly motivating factors to adopt CVF in various real-world applications.

References

    1. 1)
      • 1. Venosa, E., Palmieri, F.A.N.: ‘Software radio: sampling rate selection, design and synchronization’ (Springer Science & Business Media, 2011).
    2. 2)
      • 2. Pun, C.K.S., Chan, S.-C., Ho, K.-L.: ‘Efficient 1D and circular symmetric 2D FIR filters with variable cutoff frequencies using the Farrow structure and multiplier-block’. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2001, vol. 2, pp. 561564.
    3. 3)
      • 3. Johansson, H., Lowenborg, P.: ‘On linear-phase FIR filters with variable bandwidth’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2004, 51, (4), pp. 181184.
    4. 4)
      • 4. Lowenborg, P., Johansson, H.: ‘Minimax design of adjustable-bandwidth linear-phase FIR filters’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2006, 53, (2), pp. 431439.
    5. 5)
      • 5. Yu, Y.J., Lim, Y.C., Shi, D.: ‘Low-complexity design of variable bandedge linear phase FIR filters with sharp transition band’, IEEE Trans. Signal Process., 2009, 57, (4), pp. 13281338.
    6. 6)
      • 6. M., R.M., Oppenheim, A.V., Mecklenbrauker, W.F.G.: ‘Variable cutoff linear phase digital filters’, IEEE Trans. Circuits Syst., 1976, CAS-23, (4) , pp. 199203.
    7. 7)
      • 7. Bogucka, H., Kryszkiewicz, P., Kliks, A.: ‘Dynamic spectrum aggregation for future 5G communications’, IEEE Commun. Mag., 2015, 53, (5), pp. 3543.
    8. 8)
      • 8. Mahesh, R., Vinod, A.P., Moy, C., Palicot, J.: ‘A low complexity reconfigurable filter bank architecture for spectrum sensing in cognitive radios’. 3rd Int. Conf. on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom), 2008, pp. 16.
    9. 9)
      • 9. Haridas, N., Elias, E.: ‘Reconfigurable Farrow structure based FRM filters for wireless communication systems’, Circuits Syst. Signal Process., 2016, pp. 124, doi: 10.1007/s00034-016-0309-4.
    10. 10)
      • 10. Yu, Y.J., Xu, W.J.: ‘Mixed-radix fast filter bank approach for the design of variable digital filters with simultaneously tunable bandedge and fractional delay’, IEEE Trans. Signal Process., 2012, 60, (1), pp. 100111.
    11. 11)
      • 11. Smitha, K.G., Vinod, A.P.: ‘A reconfigurable non-uniform filter bank architecture for military radio receivers’. IEEE 17th Int. Conf. on Telecommunications (ICT), 2010, pp. 946950.
    12. 12)
      • 12. Kavallur Gopi, S., Vinod, A.P.: ‘A multi-resolution fast filter bank for spectrum sensing in military radio receivers’, IEEE Trans. VLSI Syst., 2012, 20, (7), pp. 13231327.
    13. 13)
      • 13. Abu-Al-Saud, W., Stüber, G.L., Wajih, A.: ‘Efficient wideband channelizer for software radio systems using modulated PR filterbanks’, IEEE Trans. Signal Process., 2004, 52, (10), pp. 28072820.
    14. 14)
      • 14. Mahesh, R., Vinod, A.P.: ‘Coefficient decimation approach for realizing reconfigurable finite impulse response filters’. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2008, pp. 8184.
    15. 15)
      • 15. Ambede, A., Kavallur Gopi, S., Vinod, A.P.: ‘A modified coefficient decimation method to realize low complexity FIR filters with enhanced frequency response flexibility and passband resolution’. IEEE 35th Int. Conf. on Telecommunications and Signal Processing (TSP), 2012, pp. 658661.
    16. 16)
      • 16. Ambede, A., Smitha, K.G., Vinod, A.P.: ‘Flexible low complexity uniform and nonuniform digital filter banks with high frequency resolution for multistandard radios’, IEEE Trans. VLSISyst., 2015, 23, (4), pp. 631641.
    17. 17)
      • 17. Harris, F.: ‘Performance and design of Farrow filter used for arbitrary resampling’. 13th IEEE Int. Conf. on Digital Signal Processing Proceedings, DSP, 1997, vol. 2, pp. 595599.
    18. 18)
      • 18. George, J.T., Elias, E.: ‘Reconfigurable channel filtering and digital down conversion in optimal CSD space for software defined radio’, AEU-Int. J. Electron. Commun., 2014, 68, (4), pp. 312321.
    19. 19)
      • 19. Vesma, J., Saramaki, T.: ‘Polynomial-based interpolation filters part I: filter synthesis’, Circ. Syst. Signal Process., 2007, 26, (2), pp. 115146.
    20. 20)
      • 20. Vaidyanathan, P.P.: ‘Multirate systems and filter banks’ (Pearson Education India, 1993).
    21. 21)
      • 21. Harris, F.J.: ‘Multirate signal processing for communication systems’ (Prentice Hall PTR, 2004).
    22. 22)
      • 22. Farrow, C.W.: ‘A continuously variable digital delay element’. IEEE Int. Symp. on Circuits and Systems, 1988, pp. 26412645.
    23. 23)
      • 23. Hermanowicz, E.: ‘Explicity formulas for weighting coefficients of maximally flat tunable FIR delays’, Electron. Lett., 1992, 28, (20), pp. 19361937.
    24. 24)
      • 24. Tseng, C.-C.: ‘Design of variable fractional delay FIR filter using differentiator bank’. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2002, vol. 4, p. IV421.
    25. 25)
      • 25. Hermanowicz, E.: ‘Designing linear-phase digital differentiators a novel approach’. IEEE 14th European Signal Processing Conf., 2006, pp. 14.
    26. 26)
      • 26. Lim, Y.C.: ‘Frequency-response masking approach for the synthesis of sharp linear phase digital filters’, IEEE Trans. Circuits Syst., 1986, 33, (4), pp. 357364.
    27. 27)
      • 27. Kalathil, S., Bijili, S.K., Elias, E.: ‘Efficient design of multiplier-less digital channelizers using recombination non-uniform filter banks’, J. King Saud Univ. Eng. Sci., 2015, http://dx.doi.org/10.1016/j.jksues.2015.11.002.
    28. 28)
      • 28. Harris, F.: ‘Fixed length FIR filters with continuously variable bandwidth’. IEEE 1st Int. Conf. on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE), 2009, pp. 931935.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0055
Loading

Related content

content/journals/10.1049/iet-spr.2016.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address