Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive stochastic gradient descent on the Grassmannian for robust low-rank subspace recovery

Loading full text...

Full text loading...

/deliver/fulltext/iet-spr/10/8/IET-SPR.2016.0049.html;jsessionid=j1kq2qgvyn3t.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-spr.2016.0049&mimeType=html&fmt=ahah

References

    1. 1)
      • 17. He, J., Balzano, L., Lui, J.: ‘Online robust subspace tracking from partial information’, Arxiv preprint arXiv:1109.3827, 2011.
    2. 2)
      • 28. Plakhov, A., Cruz, P.: ‘A stochastic approximation algorithm with step-size adaptation’, J. Math. Sci., 2004, 120, (1), pp. 964973.
    3. 3)
      • 14. Candès, E.J., Li, X., Ma, Y., et al: ‘Robust principal component analysis?’, J. ACM, 2011, 58, (3), pp. 137.
    4. 4)
      • 19. Guo, H., Qiu, C., Vaswani, N.: ‘An online algorithm for separating sparse and low-dimensional signal sequences from their sum’, IEEE Trans. Signal Process., 2014, 62, (16), pp. 42844297.
    5. 5)
      • 24. Cevher, V., Becker, S., Schmidt, M.: ‘Convex optimization for big data: scalable, randomized, and parallel algorithms for big data analytics’, IEEE Signal Process. Mag., 2014, 31, (5), pp. 3243.
    6. 6)
      • 15. Mateos, G., Giannakis, G.B.: ‘Robust PCA as bilinear decomposition with outlier-sparsity regularization’, IEEE Trans. Signal Process., 2012, 60, (10), pp. 51765190.
    7. 7)
      • 37. Ngo, T., Saad, Y.: ‘Scaled gradients on Grassmann manifolds for matrix completion’. Advances in Neural Information Processing Systems, 2012, pp. 14121420.
    8. 8)
      • 35. Lee, K.C., Ho, J., Kriegman, D.: ‘Acquiring linear subspaces for face recognition under variable lighting’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 684698.
    9. 9)
      • 13. Hsu, D., Kakade, S.M., Zhang, T.: ‘Robust matrix decomposition with sparse corruptions’, IEEE Trans. Inf. Theory, 2011, 57, (11), pp. 72217234.
    10. 10)
      • 27. Kushner, H.J., Yin, G.: ‘Stochastic approximation and recursive algorithms and applications’ (Springer Science & Business Media, 2003), vol. 35.
    11. 11)
      • 30. Nedić, A., Bertsekas, D.: ‘Convergence rate of incremental subgradient algorithms’. Stochastic Optimization: Algorithms and Applications, 2001, pp. 223264.
    12. 12)
      • 12. Agarwal, A., Negahban, S., Wainwright, M.J.: ‘Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions’, Ann. Stat., 2012, 40, (2), pp. 11711197.
    13. 13)
      • 33. Sanderson, C.: ‘Armadillo: an open source C++ linear algebra library for fast prototyping and computationally intensive experiments’. Technical Report, 2010.
    14. 14)
      • 1. Moulines, E., Duhamel, P., Cardoso, J.F., et al: ‘Subspace methods for the blind identification of multichannel FIR filters’, IEEE Trans. Signal Process., 1995, 43, (5), pp. 516525.
    15. 15)
      • 21. Feng, J., Xu, H., Mannor, S., et al: ‘Online pca for contaminated data’. Advances in Neural Information Processing Systems, 2013, pp. 764772.
    16. 16)
      • 7. Xu, H., Caramanis, C., Mannor, S.: ‘Outlier-robust PCA: the high dimensional case’, IEEE Trans. Inf. Theory, 2013, 59, (1), pp. 546572.
    17. 17)
      • 26. Robbins, H., Monro, S.: ‘A stochastic approximation method’. The Annals of Mathematical Statistics, 1951, pp. 400407.
    18. 18)
      • 31. Zhang, D., Balzano, L.: ‘Global convergence of a grassmannian gradient descent algorithm for subspace estimation’, arXiv preprint arXiv:1506.07405, 2015.
    19. 19)
      • 32. Balzano, L., Wright, S.: ‘Local convergence of an algorithm for subspace identification from partial data’, Found. Comput. Math., 2015, 15, (5), pp. 12791314.
    20. 20)
      • 6. Xu, H., Caramanis, C., Sanghavi, S.: ‘Robust PCA via outlier pursuit’, IEEE Trans. Inf. Theory, 2012, 58, (5), pp. 30473064.
    21. 21)
      • 10. Chandrasekaran, V., Sanghavi, S., Parrilo, P., et al: ‘Rank-sparsity incoherence for matrix decomposition’, SIAM J. Optim., 2011, 21, (2), pp. 572596.
    22. 22)
      • 22. Goes, J., Zhang, T., Arora, R., et al: ‘Robust stochastic principal component analysis’. Proc. of the Seventeenth Int. Conf. on Artificial Intelligence and Statistics, 2014, pp. 266274.
    23. 23)
      • 38. Mishra, H.B., Adithya Apuroop, K., Sepulchre, R.: ‘A Riemannian geometry for low-rank matrix completion’, arXiv preprint arXiv:1211.1550, 2012.
    24. 24)
      • 4. Basri, R., Jacobs, D.: ‘Lambertian reflectance and linear subspaces’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (2), pp. 218233.
    25. 25)
      • 5. Huber, P.J., Ronchetti, E.M.: ‘Robust statistics’ (Wiley, 2009).
    26. 26)
      • 34. Kennedy, R., Taylor, C.J., Balzano, L.: ‘Online completion of Ill-conditioned low-rank matrices’. IEEE Global Conf. on Signal and Information Processing (GlobalSIP), 2014.
    27. 27)
      • 36. Li, F.F., Fergus, R., Perona, P.: ‘Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories’, Comput. Vis. Image Underst., 2007, 106, (1), pp. 5970.
    28. 28)
      • 16. Li, Y.: ‘On Incremental and robust subspace learning’, Pattern Recogn., 2004, 37, (7), pp. 15091518.
    29. 29)
      • 8. Lerman, G., McCoy, M., Tropp, J.A., et al: ‘Robust computation of linear models by convex relaxation’, Found. Comput. Math., 2015, 15, (2), pp. 363410.
    30. 30)
      • 11. Wright, J., Ganesh, A., Rao, S., et al: ‘Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization’. Advances in Neural Information Processing Systems, 2009, pp. 20802088.
    31. 31)
      • 2. Krim, S.H., Viberg, M.: ‘Two decades of array signal processing research: the parametric approach’, IEEE Signal Process. Mag., 1996, 13, (4), pp. 6794.
    32. 32)
      • 29. Klein, S., Pluim, J., Staring, M., et al: ‘Adaptive stochastic gradient descent optimisation for image registration’, Int. J. Comput. Vis., 2009, 81, (3), pp. 227239.
    33. 33)
      • 18. He, J., Balzano, L., Szlam, A.: ‘Incremental gradient on the grassmannian for online foreground and background separation in subsampled video’. 2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 15681575.
    34. 34)
      • 20. Feng, J., Xu, H., Yan, S.: ‘Online robust PCA via stochastic optimization’. Advances in Neural Information Processing Systems, 2013, pp. 404412.
    35. 35)
      • 3. Audette, M.A., Ferrie, F.P., Peters, T.M.: ‘An algorithmic overview of surface registration techniques for medical imaging’, Med. Image Anal., 2000, 4, (3), pp. 201217.
    36. 36)
      • 9. Zhang, T., Lerman, G.: ‘A novel m-estimator for robust pca’, J. Mach. Learn. Res., 2014, 15, (1), pp. 749808.
    37. 37)
      • 25. Edelman, A., Arias, T.A., Smith, S.T.: ‘The geometry of algorithms with orthogonality constraints’, SIAM J. Matrix Anal. Appl., 1998, 20, (2), pp. 303353.
    38. 38)
      • 23. Balzano, L., Nowak, R., Recht, B.: ‘Online identification and tracking of subspaces from highly incomplete information’. 2010 48th Annual Allerton Conf. on Communication, Control, and Computing (Allerton), pp. 704711.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0049
Loading

Related content

content/journals/10.1049/iet-spr.2016.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address