© The Institution of Engineering and Technology
In this study, new infinite impulse response (IIR) digital differentiators of second, third and fourth orders based on optimising the L _{1}error fitness function using the bat algorithm (BA) are proposed. The coefficients of numerator and denominator of the differentiators are computed by minimising the L _{1}norm of the error fitness function along with imposing the constraint for the location of poles and zeros within the unit circle to ensure minimum phase. The transfer function of the differentiators are inverted and transformed into the digital integrators of the same orders. The results obtained for the solutions by the proposed L _{1}based BA (L _{1}BA) are superior to the designs using other techniques such as particle swarm optimisation and realcoded genetic algorithm. The designed optimal differentiator and integrator are compared with the existing models and are found to be of high accuracy and flatness in a wide frequency range along with minimum absolute magnitude error. The mean relative error (dB) is obtained as low as −67 dB and −73 dB for the proposed differentiators and integrators, respectively.
References


1)

1. Xu, Y., Dai, T., Sycara, K., et al: ‘Service level differentiation in multirobots control’. Int. Conf. on Intelligent Robots and Systems, 2010, pp. 2224–2230.

2)

2. AlAlaoui, M.A.: ‘Novel FIR approximations of IIR differentiators with applications to image edge detection’. ICECS, Beirut, Lebanon, 2011, pp. 11–14.

3)

3. Koutsakis, P.: ‘On improving channel throughput by restricting data traffic access in multimedia integration over wireless channels’, AEUInt. J. Electron. Commun., 2008, 62, (1), pp. 1–10.

4)

4. Laguna, P., Thakor, N.V., Caminal, P., et al: ‘Lowpass differentiator for biological signals with known spectra: application to ECG signal processing’, IEEE Trans. Biomed. Eng., 1990, 37, (4), pp. 420–425.

5)

5. Kumar, B., Roy, S.C.D.: ‘Design of efficient FIR digital differentiators and Hilbert transformers for midband frequency ranges’, Int. J. Circuit Theory Appl., 1989, 17, (4), pp. 483–488.

6)

6. Kumar, B., Roy, S.C.D.: ‘Maximally linear FIR digital differentiators for high frequencies’, IEEE Trans. Circuits Syst., 1989, 36, (6), pp. 890–893.

7)

7. Alaoui, M.A.: ‘Novel digital integrator and differentiator’, Electron. Lett., 1993, 29, (4), pp. 376–378.

8)

8. Tseng, C.C., Lee, S.L.: ‘Design of digital differentiator using difference formula and Richardson extrapolation’, IET Signal Process., 2008, 2, (2), pp. 177–188.

9)

9. Pei, S.C., Hsu, H.J.: ‘Fractional bilinear transform for analogtodigital conversion’, IEEE Trans. Signal Process., 2008, 56, (5), pp. 2122–2127.

10)

10. Gupta, M., Jain, M., Kumar, B.: ‘Recursive wideband digital integrator and differentiator’, Int. J. Circuit Theory Appl., 2011, 39, pp. 775–782.

11)

11. Gupta, M., Jain, M., Kumar, B.: ‘Novel class of stable wideband recursive digital integrators and differentiators’, IET Signal Process., 2010, 4, (5), pp. 560–566.

12)

12. Upadhyay, D.K.: ‘Class of recursive wide band digital differentiators and integrator’, Radio Eng. J., 2012, 21, (3), pp. 904–910.

13)

13. Upadhyay, D.K.: ‘Recursive wide band digital differentiators’, IET Electron. Lett., 2010, 46, (25), pp. 1661–1662.

14)

14. AlAlaoui, M.A.: ‘Class of digital integrators and differentiators’, IET Signal Process., 2011, 5, (2), pp. 251–260.

15)

15. AlAlaoui, M.A., Baydoun, M.: ‘Novel wide band digital differentiators and integrators using different optimization techniques’. Int. Symp. on Signals, Circuits and Systems, 2013, pp. 1–4.

16)

16. Gupta, M., Relan, B., Yadav, R., et al: ‘Wideband digital integrators and differentiators designed using particle swarm optimization’, IET Signal Process., 2014, 8, (6), pp. 668–679.

17)

17. Jain, M., Gupta, M., Jain, N.: ‘Linear phase second order recursive digital integrators and differentiators’, Radio Eng. J., 2012, 21, (2), pp. 712–717.

18)

18. Kumar, M., Rawat, T.K.: ‘Optimal design of FIR fractional order differentiator using cuckoo search algorithm’, Expert Syst. Appl., 2015, 42, (7), pp. 3433–3449.

19)

19. Grossmann, L.D., Eldar, Y.C.: ‘An L1method for the design of linearphase FIR digital filters’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 5253–5266.

20)

20. Aggarwal, A., Rawat, T.K., Kumar, M.D.K.: ‘Optimal design of FIR high pass filter based on L1 error approximation using real coded genetic algorithm’, Eng. Sci. Technol Int. J., 2015, 18, (4), pp. 594–602.

21)

21. Yang, X.S.: ‘A new metaheuristic batinspired algorithm’, Nat. Inspired Coop. Strateg. Optim., 2010, 284, pp. 65–74.

22)

22. Yang, X.S.: ‘Bat Algorithm for multiobjective optimisation’, Int. J. BioInspired Comput., 2011, 3, (5), pp. 267–274.

23)

23. Yang, X.S., Gandomi, A.H.: ‘Bat algorithm: a novel approach for global engineering optimization’, Eng. Comput., 2012, 29, (5), pp. 464–483.

24)

24. Gandomi, A.H., Yang, X.S., Alavi, A.H., et al: ‘Bat algorithm for constrained optimization tasks’, Neural Comput. Appl., 2013, 22, (6), pp. 1239–1255.

25)

25. Yang, X.S., He, X.: ‘Bat Algorithm: literature review and applications’, Int. J. BioInspired Comput., 2013, 5, (3), pp. 141–149.

26)

26. Svecko, R., Kusic, D.: ‘Feedforward neural network position control of a piezoelectric actuator based on a BAT search algorithm’, Expert Syst. Appl., 2015, 42, (13), pp. 5416–5423.

27)

27. Bora, T.C., Coelho, L.D.S., Lebensztajn, L.: ‘Batinspired optimization approach for the brushless DC wheel motor problem’, IEEE Trans. Magn., 2012, 48, (2), pp. 947–950.

28)

28. Nakamura, R.Y., Pereira, L.A., Costa, K.A., et al: ‘BBA: a binary bat algorithm for feature selection’. IEEE Conf. on Graphics, Patterns and Images, 2012, pp. 291–297.

29)

29. Saha, S.K., Kar, R., Mandal, D., et al: ‘A new design method using oppositionbased BAT algorithm for IIR system identification problem’, Int. J. BioInspired Comput., 2013, 5, (2), pp. 99–132.

30)

30. Ali, E.S.: ‘Optimization of power system stabilizers using BAT search algorithm’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 683–690.

31)

31. Aggarwal, A., Rawat, T.K., Kumar, M., et al: ‘An L1 atmethod: application to digital symmetric typeII FIR filter design’, in Stefano Berretti, S.M., Thampi, P.R.S. ‘Intelligent systems technologies and applications’ (Springer International Publishing, 2016), pp. 335–343.

32)

32. Aggarwal, A., Kumar, M., Rawat, T.K.: ‘L1 error criterion based optimal FIR filters’. Annual IEEE India Conf. INDICON, 2014, pp. 1–6.

33)

33. Aggarwal, A., Rawat, T.K., Upadhyay, D.K.: ‘Design of optimal digital FIR filters using evolutionary and swarm optimization techniques’, Accepted in AEUInt. J. Electron. Commun., 2016, 70, 4, 373–385.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietspr.2016.0010
Related content
content/journals/10.1049/ietspr.2016.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6