http://iet.metastore.ingenta.com
1887

Optimal design of L 1-norm based IIR digital differentiators and integrators using the bat algorithm

Optimal design of L 1-norm based IIR digital differentiators and integrators using the bat algorithm

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, new infinite impulse response (IIR) digital differentiators of second, third and fourth orders based on optimising the L 1-error fitness function using the bat algorithm (BA) are proposed. The coefficients of numerator and denominator of the differentiators are computed by minimising the L 1-norm of the error fitness function along with imposing the constraint for the location of poles and zeros within the unit circle to ensure minimum phase. The transfer function of the differentiators are inverted and transformed into the digital integrators of the same orders. The results obtained for the solutions by the proposed L 1-based BA (L 1-BA) are superior to the designs using other techniques such as particle swarm optimisation and real-coded genetic algorithm. The designed optimal differentiator and integrator are compared with the existing models and are found to be of high accuracy and flatness in a wide frequency range along with minimum absolute magnitude error. The mean relative error (dB) is obtained as low as −67 dB and −73 dB for the proposed differentiators and integrators, respectively.

References

    1. 1)
      • 1. Xu, Y., Dai, T., Sycara, K., et al: ‘Service level differentiation in multi-robots control’. Int. Conf. on Intelligent Robots and Systems, 2010, pp. 22242230.
    2. 2)
      • 2. Al-Alaoui, M.A.: ‘Novel FIR approximations of IIR differentiators with applications to image edge detection’. ICECS, Beirut, Lebanon, 2011, pp. 1114.
    3. 3)
      • 3. Koutsakis, P.: ‘On improving channel throughput by restricting data traffic access in multimedia integration over wireless channels’, AEU-Int. J. Electron. Commun., 2008, 62, (1), pp. 110.
    4. 4)
      • 4. Laguna, P., Thakor, N.V., Caminal, P., et al: ‘Low-pass differentiator for biological signals with known spectra: application to ECG signal processing’, IEEE Trans. Biomed. Eng., 1990, 37, (4), pp. 420425.
    5. 5)
      • 5. Kumar, B., Roy, S.C.D.: ‘Design of efficient FIR digital differentiators and Hilbert transformers for midband frequency ranges’, Int. J. Circuit Theory Appl., 1989, 17, (4), pp. 483488.
    6. 6)
      • 6. Kumar, B., Roy, S.C.D.: ‘Maximally linear FIR digital differentiators for high frequencies’, IEEE Trans. Circuits Syst., 1989, 36, (6), pp. 890893.
    7. 7)
      • 7. Alaoui, M.A.: ‘Novel digital integrator and differentiator’, Electron. Lett., 1993, 29, (4), pp. 376378.
    8. 8)
      • 8. Tseng, C.C., Lee, S.L.: ‘Design of digital differentiator using difference formula and Richardson extrapolation’, IET Signal Process., 2008, 2, (2), pp. 177188.
    9. 9)
      • 9. Pei, S.C., Hsu, H.J.: ‘Fractional bilinear transform for analog-to-digital conversion’, IEEE Trans. Signal Process., 2008, 56, (5), pp. 21222127.
    10. 10)
      • 10. Gupta, M., Jain, M., Kumar, B.: ‘Recursive wideband digital integrator and differentiator’, Int. J. Circuit Theory Appl., 2011, 39, pp. 775782.
    11. 11)
      • 11. Gupta, M., Jain, M., Kumar, B.: ‘Novel class of stable wideband recursive digital integrators and differentiators’, IET Signal Process., 2010, 4, (5), pp. 560566.
    12. 12)
      • 12. Upadhyay, D.K.: ‘Class of recursive wide band digital differentiators and integrator’, Radio Eng. J., 2012, 21, (3), pp. 904910.
    13. 13)
      • 13. Upadhyay, D.K.: ‘Recursive wide band digital differentiators’, IET Electron. Lett., 2010, 46, (25), pp. 16611662.
    14. 14)
      • 14. Al-Alaoui, M.A.: ‘Class of digital integrators and differentiators’, IET Signal Process., 2011, 5, (2), pp. 251260.
    15. 15)
      • 15. Al-Alaoui, M.A., Baydoun, M.: ‘Novel wide band digital differentiators and integrators using different optimization techniques’. Int. Symp. on Signals, Circuits and Systems, 2013, pp. 14.
    16. 16)
      • 16. Gupta, M., Relan, B., Yadav, R., et al: ‘Wideband digital integrators and differentiators designed using particle swarm optimization’, IET Signal Process., 2014, 8, (6), pp. 668679.
    17. 17)
      • 17. Jain, M., Gupta, M., Jain, N.: ‘Linear phase second order recursive digital integrators and differentiators’, Radio Eng. J., 2012, 21, (2), pp. 712717.
    18. 18)
      • 18. Kumar, M., Rawat, T.K.: ‘Optimal design of FIR fractional order differentiator using cuckoo search algorithm’, Expert Syst. Appl., 2015, 42, (7), pp. 34333449.
    19. 19)
      • 19. Grossmann, L.D., Eldar, Y.C.: ‘An L1-method for the design of linear-phase FIR digital filters’, IEEE Trans. Signal Process., 2007, 55, (11), pp. 52535266.
    20. 20)
      • 20. Aggarwal, A., Rawat, T.K., Kumar, M.D.K.: ‘Optimal design of FIR high pass filter based on L1 error approximation using real coded genetic algorithm’, Eng. Sci. Technol Int. J., 2015, 18, (4), pp. 594602.
    21. 21)
      • 21. Yang, X.S.: ‘A new metaheuristic bat-inspired algorithm’, Nat. Inspired Coop. Strateg. Optim., 2010, 284, pp. 6574.
    22. 22)
      • 22. Yang, X.S.: ‘Bat Algorithm for multi-objective optimisation’, Int. J. Bio-Inspired Comput., 2011, 3, (5), pp. 267274.
    23. 23)
      • 23. Yang, X.S., Gandomi, A.H.: ‘Bat algorithm: a novel approach for global engineering optimization’, Eng. Comput., 2012, 29, (5), pp. 464483.
    24. 24)
      • 24. Gandomi, A.H., Yang, X.S., Alavi, A.H., et al: ‘Bat algorithm for constrained optimization tasks’, Neural Comput. Appl., 2013, 22, (6), pp. 12391255.
    25. 25)
      • 25. Yang, X.S., He, X.: ‘Bat Algorithm: literature review and applications’, Int. J. Bio-Inspired Comput., 2013, 5, (3), pp. 141149.
    26. 26)
      • 26. Svecko, R., Kusic, D.: ‘Feedforward neural network position control of a piezoelectric actuator based on a BAT search algorithm’, Expert Syst. Appl., 2015, 42, (13), pp. 54165423.
    27. 27)
      • 27. Bora, T.C., Coelho, L.D.S., Lebensztajn, L.: ‘Bat-inspired optimization approach for the brushless DC wheel motor problem’, IEEE Trans. Magn., 2012, 48, (2), pp. 947950.
    28. 28)
      • 28. Nakamura, R.Y., Pereira, L.A., Costa, K.A., et al: ‘BBA: a binary bat algorithm for feature selection’. IEEE Conf. on Graphics, Patterns and Images, 2012, pp. 291297.
    29. 29)
      • 29. Saha, S.K., Kar, R., Mandal, D., et al: ‘A new design method using opposition-based BAT algorithm for IIR system identification problem’, Int. J. Bio-Inspired Comput., 2013, 5, (2), pp. 99132.
    30. 30)
      • 30. Ali, E.S.: ‘Optimization of power system stabilizers using BAT search algorithm’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 683690.
    31. 31)
      • 31. Aggarwal, A., Rawat, T.K., Kumar, M., et al: ‘An L1 at-method: application to digital symmetric type-II FIR filter design’, in Stefano Berretti, S.M., Thampi, P.R.S.Intelligent systems technologies and applications’ (Springer International Publishing, 2016), pp. 335343.
    32. 32)
      • 32. Aggarwal, A., Kumar, M., Rawat, T.K.: ‘L1 error criterion based optimal FIR filters’. Annual IEEE India Conf. INDICON, 2014, pp. 16.
    33. 33)
      • 33. Aggarwal, A., Rawat, T.K., Upadhyay, D.K.: ‘Design of optimal digital FIR filters using evolutionary and swarm optimization techniques’, Accepted in AEU-Int. J. Electron. Commun., 2016, 70, 4, 373385doi: 10.1016/j.aeue.2015.12.012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2016.0010
Loading

Related content

content/journals/10.1049/iet-spr.2016.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address