access icon free Robust adaptive beamforming against large DOA mismatch with linear phase and magnitude constraints for multiple-input–multiple-output radar

In this study, a robust adaptive beamformer against large direction-of-arrival (DOA) mismatch for multiple-input–multiple-output radar is proposed with linear phase and magnitude constraints on main lobe. First, the full-dimensional weight vector (WV) is expressed as the Kronecker product of the transmit and receive array WVs based on the WV separable principle. For the transmit array WV, the authors find an interesting property that the Fourier spectrum of its conjugate inverse arrangement is equal to its array response function within a phase factor. This property also exists in the receive array WV. Using this property, the phase response of the transmit and receive array, respectively, is set to be linear based on designing a finite impulse response filter. Then, a bi-quadratic cost function with respect to the transmit and receive WVs is established by only constraining the real magnitude response and it is effectively solved by the bi-iterative algorithm. The proposed beamformer has lower computational complexity and faster sample convergence rate, compared with the traditional magnitude response constraints beamformers with full degrees of freedom. Moreover, it can provide good robustness against large DOA mismatch. Numerical experiments are provided to demonstrate the effectiveness of the proposal.

Inspec keywords: iterative methods; FIR filters; vectors; MIMO radar; Fourier transforms; array signal processing; convergence of numerical methods; radar signal processing

Other keywords: robust adaptive beamforming; array response function; transmit array; convergence rate; Kronecker product; receive array; degrees of freedom; DOA mismatch; Fourier spectrum; multiple-input-multiple-output radar; FIR filter; finite impulse response filter; full-dimensional weight vector; direction-of-arrival mismatch; linear phase; WV; bi-iterative algorithm; phase response; conjugate inverse arrangement; main lobe; MIMO radar; magnitude response constraints beamformers; biquadratic cost function

Subjects: Interpolation and function approximation (numerical analysis); Filtering methods in signal processing; Radar equipment, systems and applications; Linear algebra (numerical analysis); Integral transforms in numerical analysis

References

    1. 1)
      • 1. Bliss, D.W., Forsythe, K.W.: ‘Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution’. Proc. of the 37th IEEE Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, November 2003, pp. 5459.
    2. 2)
      • 15. Jia, W.M., Jin, W., Zhou, S.H., et al: ‘Robust adaptive beamforming based on a new steering vector estimation algorithm’, Signal Process., 2013, 93, (9), pp. 25392542.
    3. 3)
      • 10. Vorobyov, S.A., Gershman, A.B., Luo, Z.Q.: ‘Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem’, IEEE Trans. Signal Process., 2003, 51, (2), pp. 313324.
    4. 4)
      • 22. Zhang, W., Wang, J., Wu, S.: ‘Robust minimum variance multiple-input multiple-output radar beamformer’, IET Signal Process., 2013, 7, (9), pp. 854862.
    5. 5)
      • 24. Feng, D.Z., Li, X.M., Lv, H., et al: ‘Two-sided minimum-variance distortionless response beamformer for MIMO radar’, Signal Process., 2009, 89, (3), pp. 328332.
    6. 6)
      • 9. Carlson, B.D.: ‘Covariance matrix estimation errors and diagonal loading in adaptive arrays’, IEEE Trans. Aerosp. Electron. Syst., 1988, 24, (4), pp. 397401.
    7. 7)
      • 2. Fishler, E., Haimovich, A., Blum, R., et al: ‘Spatial diversity in radars – models and detection performance’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 823838.
    8. 8)
      • 13. Hassanien, A., Vorobyov, S.A., Wong, K.M.: ‘Robust adaptive beamforming using sequential quadratic programming: an iterative solution to the mismatch problem’, IEEE Signal Process. Lett., 2008, 15, pp. 733736.
    9. 9)
      • 17. Tseng, C.Y., Griffiths, L.J.: ‘A unified approach to the design of linear constraints in minimum variance adaptive beamformers’, IEEE Trans. Antennas Propag., 1992, 40, (12), pp. 15331542.
    10. 10)
      • 21. Yu, Z.L., Gu, Z., Zhou, J., et al: ‘A robust adaptive beamformer based on worst-case semi-definite programming’, IEEE Trans. Signal Process., 2012, 58, (11), pp. 59145919.
    11. 11)
      • 29. Reed, I.S., Mallett, J.D., Brennan, L.E.: ‘Rapid convergence rate in adaptive arrays’, IEEE Trans. Aerosp. Electron. Syst., 1974, 10, (6), pp. 853863.
    12. 12)
      • 28. CVX Research: ‘CVX: Matlab software for disciplined convex programming, version 2.0 beta’. Available at http://www.cvxr.com/cvx, accessed August 2013.
    13. 13)
      • 4. Bekkerman, I., Tabrikian, J.: ‘Target detection and localization using MIMO radars and sonars’, IEEE Trans. Signal Process., 2006, 54, (10), pp. 38733883.
    14. 14)
      • 27. Bellanger, M.: ‘Digital processing of signals (theory and practice)’ (John Wiley & Sons Press, New York, 1984).
    15. 15)
      • 18. Chen, C.Y., Vaidyanathan, P.P.: ‘Quadratically constrained beamforming robust against direction-of-arrival mismatch’, IEEE Trans. Signal Process., 2007, 55, (8), pp. 41394150.
    16. 16)
      • 16. Krolik, J.L.: ‘The performance of matched-field beamformers with mediterranean vertical array data’, IEEE Trans. Signal Process., 1996, 44, (10), pp. 26052611.
    17. 17)
      • 20. Liao, B., Tsui, K.M., Chan, S.C.: ‘Robust beamforming with magnitude response constraints using iterative second-order cone programming’, IEEE Trans. Antennas Propag., 2011, 59, (9), pp. 34773482.
    18. 18)
      • 6. Haimovich, A.M., Blum, R.S., Cimini, J., et al: ‘MIMO radar with widely separated antennas’, IEEE Signal Process. Mag., 2008, 25, (1), pp. 116129.
    19. 19)
      • 3. Li, J., Stoica, P., Xu, L.Z., et al: ‘On parameter identifiability of MIMO radar’, IEEE Signal Process. Lett., 2007, 14, (12), pp. 968971.
    20. 20)
      • 26. Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: ‘Signals and Systems’ (Publishing House of Electronics Industry Press, Beijing, 2002, 2008, 2nd edn.).
    21. 21)
      • 19. Yu, Z.L., Ser, W., Er, M.H., et al: ‘Robust adaptive beamformers based on worst-case optimization and constraints on magnitude response’, IEEE Trans. Signal Process., 2009, 57, (7), pp. 26152628.
    22. 22)
      • 25. Abramovich, Y.I., Frazer, G.J., Johnson, B.A.: ‘Iterative adaptive Kronecker MIMO radar beamformer: description and convergence analysis’, IEEE Trans. Signal Process., 2010, 58, (7), pp. 36813691.
    23. 23)
      • 8. Cao, Y., Feng, D.Z., Shui, P.L., et al: ‘Two-dimensional pulse-to-pulse canceller applied in multiple-input-multiple-output radar’, IET Radar Sonar Navig., 2012, 6, (9), pp. 945955.
    24. 24)
      • 11. Li, J., Stoica, P., Wang, Z.: ‘On robust Capon beamforming and diagonal loading’, IEEE Trans. Signal Process., 2003, 51, (17), pp. 17021715.
    25. 25)
      • 14. Khabbazibasmenj, A., Vorobyov, S.A., Hassanien, A.: ‘Robust adaptive beamforming based on steering vector estimation with as little as possible prior information’, IEEE Trans. Signal Process., 2012, 60, (6), pp. 29742987.
    26. 26)
      • 7. Li, J., Stoica, P.: ‘MIMO radar with collocated antennas’, IEEE Signal Process. Mag., 2007, 24, pp. 106114.
    27. 27)
      • 12. Vorobyov, S.A., Chen, H.H., Gershman, A.B.: ‘On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response of constraints’, IEEE Trans. Signal Process., 2008, 56, (11), pp. 57195724.
    28. 28)
      • 23. Xiang, C., Feng, D.Z., Lv, H., et al: ‘Robust adaptive beamforming for MIMO radar’, Signal Process., 2010, 90, (12), pp. 31853196.
    29. 29)
      • 5. Li, J., Stoica, P.: ‘MIMO radar signal processing’ (Wiley Press, New York, 2009).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2015.0521
Loading

Related content

content/journals/10.1049/iet-spr.2015.0521
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading