access icon free Analytical spatial correlation analysis based on the hierarchical angle model for uniform linear and circular antenna arrays

In this study, an analytical analysis of normalised spatial correlation based on a hierarchical angle model for uniform linear array (ULA) and uniform circular array (UCA) over clustered narrowband multiple-input multiple-output channels is presented. The clustered channel has independent multiple paths, each of which is a cluster consisting of a number of independent subpaths, constructing a hierarchical angle structure. Unlike most of existing analysis methods that employ various simplification to the hierarchical angle, in this study, the hierarchical angle is expressed as a function of bivariate random variables. This formulation can include the simplified models as special cases. Assuming the angle of departure and angle of arrival of each subpath are independent, a closed-form spatial correlation expression between transmit and receive antennas of ULA or UCA is derived. Simulation results show that the theoretical spatial correlation matches well with the simulated one with channel data generated from the 3GPP spatial channel model for different scenarios.

Inspec keywords: transmitting antennas; correlation methods; linear antenna arrays; array signal processing; 3G mobile communication; wireless channels; direction-of-arrival estimation; MIMO communication; receiving antennas

Other keywords: normalised spatial correlation; receive antennas; theoretical spatial correlation; uniform circular antenna arrays; hierarchical angle; spatial correlation expression; bivariate random variables; angle-of-arrival; uniform linear antenna arrays; 3GPP spatial channel model; hierarchical angle structure; transmit antennas; UCA; hierarchical angle model; analytical spatial correlation analysis; ULA; angle-of-departure; clustered narrowband multiple-input multiple-output channels

Subjects: Antenna arrays; Mobile radio systems; Signal processing and detection

References

    1. 1)
      • 1. Jorswieck, E.A., Mochaourab, R., Mittelbach, M.: ‘Effective capacity maximization in multi-antenna channels with covariance feedback’, IEEE Trans. Wirel. Commun., 2010, 9, (10), pp. 29882993.
    2. 2)
      • 14. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathenatical functions with formulas, graphs, and mathematical tables’ (Dover Press, New York, 1970, 9th edn.).
    3. 3)
      • 12. Salo, J., Del Galdo, G., Salmi, J., et al: ‘MATLAB implementation of the 3GPP spatial channel model (3GPP, TR 25.996)’, 2005.
    4. 4)
      • 3. Commission of the European Communities: ‘IST-WINNER II project deliverable D1.1.2 WINNER II channel models’, 2006.
    5. 5)
      • 6. Hong, X., Wang, C., Thompson, J., et al: ‘On space-frequency correlation of UWB MIMO channels’, IEEE Trans. Veh. Technol., 2010, 59, (9), pp. 42014213.
    6. 6)
      • 11. Tsai, J.-A., Buehrer, R.M., Woerner, B.D.: ‘Spatial fading correlation function of circular antenna arrays with Laplacian energy distribution’, IEEE Commun. Lett., 2002, 6, (5), pp. 178180.
    7. 7)
      • 13. Gradshteyn, I.S., Ryzhik, I.M.: ‘Table of integrals, series, and products’ (Academic Press, San Diego, CA, 1994, 5th edn.).
    8. 8)
      • 16. 3GPP, TR 37.840, v1.1.0: ‘Study of AAS base station’, 2013.
    9. 9)
      • 4. 3GPP, TR 25.996, v11.0.0: ‘Spatial channel model for multiple input multiple output (MIMO) simulations’, 2012.
    10. 10)
      • 10. Forenza, A., Love, D.J., Heath, R.W.Jr.: ‘Simplified spatial correlation models for clustered MIMO channels with different array configurations’, IEEE Trans. Veh. Technol., 2007, 56, (4), pp. 19241933.
    11. 11)
      • 8. Ioannides, P., Balanis, C.A.: ‘Uniform circular and rectangular arrays for adaptive beamforming applications’, IEEE Antennas Wirel. Propag. Lett., 2005, 4, pp. 351354.
    12. 12)
      • 7. Derpich, M.S., Feick, R.: ‘Space-frequency second-order statistics of the power gain of wideband indoor channels’. WCNC, Istanbul, Turkey, April 2014, pp. 3439.
    13. 13)
      • 9. Landmann, M.: ‘Limitations of experimental channel characterization’. PhD thesis, Technische Universität Ilmenau, Ilmenau, Germany, 2008.
    14. 14)
      • 5. Wang, C.X., Hong, X., Wu, H., et al: ‘Spatial temporal correlation properties of the 3GPP spatial channel model and Kronecker MIMO channel model’, EURASIP J. Wirel. Commun. Netw., 2007, 2007, pp. 19.
    15. 15)
      • 17. 3GPP, TR 37.873, v12.0.0: ‘Study on 3D channel model for LTE’, 2014.
    16. 16)
      • 2. Zhou, S., Giannakis, G.B.: ‘Optimal transmitter eigen-beamforming and space–time block coding based on channel correlations’, IEEE Trans. Inf. Theory, 2003, 49, (7), pp. 16731690.
    17. 17)
      • 15. Du, K.-L.: ‘Pattern analysis of uniform circular array’, IEEE Trans. Antennas Propag., 2004, 52, (4), pp. 11251129.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2015.0470
Loading

Related content

content/journals/10.1049/iet-spr.2015.0470
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading