access icon free Unbiased, optimal, and in-betweens: the trade-off in discrete finite impulse response filtering

In this survey, the authors examine the trade-off between the unbiased, optimal, and in-between solutions in finite impulse response (FIR) filtering. Specifically, they refer to linear discrete real-time invariant state-space models with zero mean noise sources having arbitrary covariances (not obligatorily delta shaped) and distributions (not obligatorily Gaussian). They systematically analyse the following batch filtering algorithms: unbiased FIR (UFIR) subject to the unbiasedness condition, optimal FIR (OFIR) which minimises the mean square error (MSE), OFIR with embedded unbiasedness (EU) which minimises the MSE subject to the unbiasedness constraint, and optimal UFIR (OUFIR) which minimises the MSE in the UFIR estimate. Based on extensive investigations of the polynomial and harmonic models, the authors show that the OFIR-EU and OUFIR filters have higher immunity against errors in the noise statistics and better robustness against temporary model uncertainties than the OFIR and Kalman filters.

Inspec keywords: harmonic analysis; FIR filters; polynomials; mean square error methods; covariance analysis

Other keywords: OFIR filtering; linear discrete real-time invariant state-space model; embedded unbiasedness; unbiased FIR filtering; UFIR filtering; arbitrary covariance; EU; zero mean noise source; noise statistics; MSE method; harmonic model; discrete finite impulse response filtering; optimal FIR filtering; mean square error method; Kalman filter; polynomial

Subjects: Other topics in statistics; Filtering methods in signal processing; Other topics in statistics; Interpolation and function approximation (numerical analysis); Signal processing theory; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 15. Kwon, W.H., Han, S.: ‘Receding horizon control: model predictive control for state models’ (Springer, London, UK, 2005).
    2. 2)
      • 10. Simon, D.: ‘Optimal state estimation: Kalman, Hinf, and nonlinear approaches’ (John Wiley & Sons, Honboken, NJ, 2006).
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 2. Stark, H., Woods, J.W.: ‘Probability, random processes, and estimation theory for engineers’ (Prentice Hall, Upper Saddle River, NJ, 1994, 2nd edn.).
    8. 8)
      • 1. Gauss, C.F.: ‘Theory of the combination of observations least subject to errors’ (SIAM Publication, Philadelphia, 1995), Translated by G. W. Stewart.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 4. Aitken, A.C.: ‘On least squares and linear combinations of observations’. Proc. of the Royal Society of Edinburgh, 1935, vol. 55, pp. 4248.
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 5. Kay, S.M.: ‘Fundamentals of statistical signal processing’ (Prentice Hall, New York, 2001).
    33. 33)
    34. 34)
    35. 35)
      • 8. Gibbs, B.P.: ‘Advanced Kalman filtering, least-squares and modeling’ (John Wiley & Sons, Hoboken, NJ, 2011).
    36. 36)
      • 51. Shmaliy, Y.S., Simon, D.: ‘Iterative unbiased FIR state estimation: a review of algorithms’, EURASIP J. Adv. Signal Process., 2013, 113, (1), pp. 116.
    37. 37)
    38. 38)
    39. 39)
      • 14. Jazwinski, A.H.: ‘Stochastic processes and filtering theory’ (Academic, New York, 1970).
    40. 40)
      • 3. Stapleton, J.H.: ‘Linear statistical models’ (Wiley, New York, 2009, 2nd edn.).
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2015.0360
Loading

Related content

content/journals/10.1049/iet-spr.2015.0360
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading