access icon free Spherical interpolation method of emitter localisation using weighted least squares

In this study, a new noise model is presented to address the issue of finding an emitting target using time difference of arrival measurements, based on the range between the emitter and a known sensor. To improve the performance of the estimator under the proposed noise model, a weighted version of the spherical interpolation method is proposed and then two weighting matrices required in the method are derived in two different conditions. A detailed theoretical error analysis associated with this algorithm is presented and the Cramer–Rao lower bound is also derived. Simulation studies verify the validity of the proposed error analysis. In addition, in a two-dimensional space and in the case of a minimal number of sensors, the authors analytically determine the sensors layout in which the location solution is not unique. Via simulations, several placements in a covered region are studied to select the appropriate placement in which the root mean square error of the target position estimation is minimised. Furthermore, simulation results show that they can do this work by the derived expression of the error analysis, which leads to the same outcome.

Inspec keywords: sensor placement; matrix algebra; direction-of-arrival estimation; least squares approximations; interpolation; error analysis; time-of-arrival estimation

Other keywords: weighting matrices; sensor; emitter target localisation; spherical interpolation method; weighted least squares; two-dimensional space; Cramer–Rao lower bound; error analysis; time difference of arrival measurements; target position estimation; root mean square error; noise model

Subjects: Error analysis in numerical methods; Interpolation and function approximation (numerical analysis); Signal processing theory; Linear algebra (numerical analysis); Signal processing and detection; Linear algebra (numerical analysis); Error analysis in numerical methods; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 15. Schau, H., Robinson, A.: ‘Passive source localization employing intersecting spherical surfaces from time-of-arrival differences’, IEEE Trans. Acoust. Speech Signal Process., 1987, 35, (8), pp. 12231225.
    2. 2)
      • 14. Malanowski, M., Kulpa, K.: ‘Two methods for target localization in multistatic passive radar’, IEEE Trans. Aerosp. Electron., 2012, 48, (1), pp. 572580.
    3. 3)
      • 9. Schmidt, R.O.: ‘A new approach to geometry of range difference location’, IEEE Trans. Aerosp. Electron., 1972, 8, (6), pp. 821835.
    4. 4)
      • 32. Neering, J., Bordier, M., Maïzi, N.: ‘Optimal passive source localization’. Int. Conf. Sensor Technologies and Applications, 2007, pp. 295300.
    5. 5)
      • 19. Ho, K.C.: ‘Bias reduction for an explicit solution of source localization using TDOA’, IEEE Trans. Signal Process., 2012, 60, (5), pp. 21012114.
    6. 6)
      • 5. Marchand, N.: ‘Error distributions of best estimate of position from multiple time difference hyperbolic networks’, IEEE Trans. Aerosp. Electron., 1964, 11, (2), pp. 96100.
    7. 7)
      • 29. Kay, S.M.: ‘Fundamentals of statistical signal processing’ (Prentice-Hall PTR, New Jersey, 1998, 1st edn.).
    8. 8)
      • 22. Wang, G., Chen, H.: ‘An importance sampling method for TDOA-based source localization’, IEEE Trans. Wirel. Commun., 2011, 10, (5), pp. 15601568.
    9. 9)
      • 6. Lee, H.B.: ‘A novel procedure for assessing the accuracy of hyperbolic multilateration systems’, IEEE Trans. Aerosp. Electron., 1975, 11, (1), pp. 215.
    10. 10)
      • 31. Harmanci, K., Tabrikian, J., Krolik, J.L.: ‘Relationships between adaptive minimum variance beamforming and optimal source localization’, IEEE Trans. Signal Process., 2000, 48, (1), pp. 112.
    11. 11)
      • 24. Beck, A., Stoica, P., Li, J.: ‘Exact and approximate solutions of source localization problems’, IEEE Trans. Signal Process., 2008, 56, (5), pp. 17701778.
    12. 12)
      • 30. Cox, H., Zeskind, R., Owen, M.: ‘Robust adaptive beamforming’, IEEE Trans. Acoust. Speech Signal Process., 1987, 35, (10), pp. 13651376.
    13. 13)
      • 25. Nak-Yong, K., Tae, G.K., Yong, S.M.: ‘Particle filter approach for localization of an underwater robot using time difference of arrival’. OCEANS, Yeosu, 2012, pp. 17.
    14. 14)
      • 7. Caffery, J.J.Jr.: ‘A new approach to the geometry of TOA location’. Vehicle Technolgy Conf., IEEE-VTS Fall VTC, 2000, vol. 4, pp. 19431949.
    15. 15)
      • 3. Addesso, P., Marano, S., Matta, V.: ‘Estimation of target location via likelihood approximation in sensor networks’, IEEE Trans. Signal Process., 2010, 58, (3), pp. 13581368.
    16. 16)
      • 23. Qu, X., Xie, L.: ‘A comparison study on TDOA based localization algorithms for sensor networks’. World Congress Intelligent Control and Automation (WCICA), 2012, pp. 44904495.
    17. 17)
      • 12. Smith, J.O., Abel, J.S.: ‘Closed-form least-squares source location estimation from range-difference measurements’, IEEE Trans. Acoust. Speech Signal Process., 1987, 35, (12), pp. 16611669.
    18. 18)
      • 13. Poisel, R.A.: ‘Electronic warfare target location methods’ (Artech House, Boston, 2012, 2nd edn.).
    19. 19)
      • 8. Cooper, D.C.: ‘Statistical analysis of position-fixing general theory for systems with Gaussian errors’. Proc. of the Institution of Electrical Engineers, 1972, vol. 119, pp. 637640.
    20. 20)
      • 11. Smith, J.O., Abel, J.S.: ‘The spherical interpolation method of source localization’, IEEE J. Ocean. Eng., 1987, 12, (1), pp. 246252.
    21. 21)
      • 27. Heidari, V., Amidzade, M., Sadeghi, K., et al: ‘Exact solutions of time difference of arrival source localisation based on semi-definite programming and Lagrange multiplier: complexity and performance analysis’, IET Signal Process., 2014, 8, (8), pp. 868877.
    22. 22)
      • 21. Gustafsson, F., Gunnarsson, F.: ‘Positioning using time-difference of arrival measurements’. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2003, pp. 553556.
    23. 23)
      • 1. Coraluppi, S.: ‘Multistatic sonar localization’, IEEE J. Ocean. Eng., 2006, 31, (4), pp. 964974.
    24. 24)
      • 2. Hanle, E.: ‘Survey of bistatic and multistatic radar’, IEE Proc. Commun. Radar Signal Process., 1986, 133, (7), pp. 587595.
    25. 25)
      • 28. Skolnik, M.I.: ‘Introduction to radar systems’ (McGraw-Hill, New Dehli, 2001).
    26. 26)
      • 10. Friedlander, B.: ‘A passive localization algorithm and its accuracy analysis’, IEEE J. Ocean. Eng., 1987, 12, (1), pp. 234245.
    27. 27)
      • 20. Schmidt, R.: ‘Least squares range difference location’, IEEE Trans. Aerosp. Electron., 1996, 32, (1), pp. 234242.
    28. 28)
      • 33. Abel, J.S., Smith, J.O.: ‘Source range and depth estimation from multipath range difference measurements’, IEEE Trans. Acoust. Speech Signal Process., 1989, 37, (8), pp. 11571165.
    29. 29)
      • 16. Mellen, G., Pachter, M., Raquet, J.: ‘Closed-form solution for determining emitter location using time difference of arrival measurements’, IEEE Trans. Aerosp. Electron., 2003, 39, (3), pp. 10561058.
    30. 30)
      • 17. Gillette, M.D., Silverman, H.F.: ‘A linear closed-form algorithm for source localization from time-differences of arrival’, IEEE Signal Process. Lett., 2008, 15, pp. 14.
    31. 31)
      • 4. Urruela, A., Sala, J., Riba, J.: ‘Average performance analysis of circular and hyperbolic geolocation’, IEEE Trans. Veh. Technol., 2006, 55, (1), pp. 5266.
    32. 32)
      • 18. Chan, Y.T., Ho, K.C.: ‘A simple and efficient estimator for hyperbolic location’, IEEE Trans. Signal Process., 1994, 42, (8), pp. 19051915.
    33. 33)
      • 26. Choi, K.H., Ra, W.S., Park, J.B., et al: ‘Compensated robust least-squares estimator for target localisation in sensor network using time difference of arrival measurements’, IET Signal Process., 2013, 7, (8), pp. 664673.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2015.0237
Loading

Related content

content/journals/10.1049/iet-spr.2015.0237
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading