http://iet.metastore.ingenta.com
1887

l 0-norm penalised shrinkage linear and widely linear LMS algorithms for sparse system identification

l 0-norm penalised shrinkage linear and widely linear LMS algorithms for sparse system identification

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose an l 0-norm penalised shrinkage linear least mean squares (l 0-SH-LMS) algorithm and an l 0-norm penalised shrinkage widely linear least mean squares (l 0-SH-WL-LMS) algorithm for sparse system identification. The proposed algorithms exploit the priori and the posteriori errors to calculate the varying step-size, thus they can adapt to the time-varying channel. Meanwhile, in the cost function they introduce a penalty term that favours sparsity to enable the applicability for sparse condition. Moreover, the l 0-SH-WL-LMS algorithm also makes full use of the non-circular properties of the signals of interest to improve the tracking capability and estimation performance. Quantitative analysis of the convergence behaviour for the l 0-SH-WL-LMS algorithm verifies the capabilities of the proposed algorithms. Simulation results show that compared with the existing least mean squares-type algorithms, the proposed algorithms perform better in the sparse channels with a faster convergence rate and a lower steady-state error. When channel changes suddenly, a filter with the proposed algorithms can adapt to the variation of the channel quickly.

References

    1. 1)
      • 1. Farhang-Boroujeny, B.: ‘Adaptive filters: theory and application’ (Wiley Press, Chichester, UK, 2013, 2nd edn. 2006).
    2. 2)
      • 2. Duttweiler, D.L.: ‘Proportionate normalized least-mean-squares adaptation in echo cancelers’, IEEE Trans. Speech Audio Process., 2000, 8, (5), pp. 508518.
    3. 3)
      • 3. Gay, S.L.: ‘An efficient, fast converging adaptive filter for network echo cancellation’. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, USA, November 1998, pp. 394398.
    4. 4)
      • 4. Benesty, J., Gay, S.L.: ‘An improved PNLMS algorithm’. Proc. IEEE ICASSP, Orlando, FL, USA, May 2002, pp. 18811884.
    5. 5)
      • 5. Deng, H., Doroslovacki, M.: ‘Proportionate adaptive algorithms for network echo cancellation’, IEEE Trans. Signal Process., 2006, 54, (5), pp. 17941803.
    6. 6)
      • 6. Deng, H., Dyba, R.A.: ‘Partial update PNLMS algorithm for network echo cancellation’. IEEE ICASSP, Taipei, April 2009, pp. 13291332.
    7. 7)
      • 7. Paleologu, C., Benesty, J., Ciochina, S.: ‘An improved proportionate NLMS algorithm based on the norm’. IEEE ICASSP, Dallas, TX, March 2010, pp. 309312.
    8. 8)
      • 8. Kwong, R.H., Johnston, E.W.: ‘A variable step size LMS algorithm’, IEEE Trans. Signal Process., 1992, 40, (7), pp. 16331642.
    9. 9)
      • 9. Mathews, V.J., Xie, Z.: ‘A stochastic gradient adaptive filter with gradient adaptive step size’, IEEE Trans. Signal Process., 1993, 41, (6), pp. 20752087.
    10. 10)
      • 10. Mader, A., Puder, H., Schmidt, G.U.: ‘Step-size control for acoustic echo cancellation filters – an overview’, Signal Process., 2000, 80, pp. 16971719.
    11. 11)
      • 11. Aboulnasr, T., Mayyas, K.: ‘A robust variable step-size LMS-type algorithm: analysis and simulations’, IEEE Trans. Signal Process., 1997, 45, (3), pp. 631639.
    12. 12)
      • 12. Pazaitis, D.I., Constantinides, A.G.: ‘A novel kurtosis driven variable step-size adaptive algorithm’, IEEE Trans. Signal Process., 1999, 47, (3), pp. 864872.
    13. 13)
      • 13. Shin, H., Sayed, A.H., Song, W.: ‘Variable step-size NLMS and affine projection algorithms’, IEEE Signal Process. Lett., 2004, 11, (2), pp. 132135.
    14. 14)
      • 14. Benesty, J., Rey, H., Rey Vega, L., et al: ‘A nonparametric VSSNLMS algorithm’, IEEE Signal Process., 2006, 13, (10), pp. 581584.
    15. 15)
      • 15. Paleologu, C., Benesty, J., Ciochina, S.: ‘A variable step-size proportionate NLMS algorithm for echo cancellation’, Rev. Roum. Sci. Tech. Ser. Electrotech. Energ., 2008, 53, (3), pp. 309317.
    16. 16)
      • 16. Bhotto, M.Z.A., Antoniou, A.: ‘A family of shrinkage adaptive filtering algorithms’, IEEE Trans. Signal Process., 2013, 61, (7), pp. 16891697.
    17. 17)
      • 17. Adali, T., Schreier, P.J., Scharf, L.L.: ‘Complex-valued signal processing: the proper way to deal with impropriety’, IEEE Trans. Signal Process., 2011, 59, (11), pp. 51015125.
    18. 18)
      • 18. Shi, Y.M., Huang, L., Qian, C., et al: ‘Shrinkage linear and widely linear complex-valued least mean squares algorithms for adaptive beamforming’, IEEE Trans. Signal Process., 2015, 63, (1), pp. 119131.
    19. 19)
      • 19. You, Q.J., Jianyun, Z., Xinan, Z.: ‘A widely-linear LMS algorithm for adaptive beamformer’. IEEE Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Hangzhou, China, April 2007, pp. 10601063.
    20. 20)
      • 20. Picinbono, B., Chevalier, P.: ‘Widely linear estimation with complex data’, IEEE Trans. Signal Process., 1995, 43, (8), pp. 20302033.
    21. 21)
      • 21. Chen, Y., Gu, Y., Hero, A.O.: ‘Sparse LMS for system identification’. IEEE ICASSP, Taipei, April 2009, pp. 31253128.
    22. 22)
      • 22. Gui, G., Peng, W., Adachi, F.: ‘Improved adaptive sparse channel estimation based on the least mean square algorithm’. IEEE WCNC, Shanghai, China, April 2013, pp. 31303134.
    23. 23)
      • 23. Salman, M.S., Jahromi, M.N.S., Hocanin, A., et al: ‘A zero-attracting variable step-size LMS algorithm for sparse system identification’. IX Int. Symp. on Telecommunications (BIHTEL), Sarajevo, October 2012, pp. 14.
    24. 24)
      • 24. Taheri, O., Vorobyov, S.A.: ‘Sparse channel estimation with lp-norm and reweighted l1-norm penalized least mean squares’. IEEE ICASSP, Prague, Czech Republic, May 2011, pp. 28642867.
    25. 25)
      • 25. Su, G., Jin, J., Gu, Y., et al: ‘Performance analysis of l0-norm constraint least mean square algorithm’, IEEE Trans. Signal Process., 2012, 60, (5), pp. 22232235.
    26. 26)
      • 26. Gu, Y., Jin, J., Mei, S.: ‘l0 norm constraint LMS algorithm for sparse system identification’, IEEE Signal Process., 2009, 16, (9), pp. 774777.
    27. 27)
      • 27. Bradley, P.S., Mangasarian, O.L.: ‘Feature selection via concave minimization and support vector machines’. Proc. 13th ICML, San Francisco, CA, 1998, pp. 8290.
    28. 28)
      • 28. Turchetti, C., Biagetti, G., Gianfelica, F., et al: ‘Nonlinear system identification: An effective framework based on the Karhunen-Loeve transform’, IEEE Trans. Signal Process., 2009, 57, (2), pp. 536550.
    29. 29)
      • 29. Daubechies, I., Defrise, M., De-Mol, C.: ‘An iterative thresholding algorithm for linear inverse problems with a sparsity constraint’, Commun. Pure Appl. Math., 2004, 57, (11), pp. 14131457.
    30. 30)
      • 30. Zibulevsky, M., Elad, M.: ‘l1-l2 optimization in signal and image processing’, IEEE Signal Process. Mag., 2010, pp. 7688.
    31. 31)
      • 31. Taheri, O., Vorobyov, S.A.: ‘Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis’, Signal Process., 2014, 104, (6) pp. 7079.
    32. 32)
      • 32. Douglas, S.C., Mandic, D.P.: ‘Performance analysis of the conventional complex LMS and augmented complex LMS algorithms’. IEEE ICASSP, Dallas, TX, June 2010, pp. 37943797.
    33. 33)
      • 33. Diniz, P.S.R.: ‘Adaptive filtering: algorithms and practical implementation’ (Springer Press, New York, 2008, 3rd edn.).
    34. 34)
      • 34. Bhotto, M.Z.A.: ‘Improved robust adaptive-filtering algorithms’. PhD thesis, University of Victoria, 2011.
    35. 35)
      • 35. Jin, J., Gu, Y., Mei, S.: ‘A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework’, IEEE J. Sel. Top. Signal Process., 2010, 4, (2), pp. 409420.
    36. 36)
      • 36. Lamare, R.C., Sampaio-Neto, R.: ‘Sparsity-aware adaptive algorithms based on alternating optimization and shrinkage’, IEEE Signal Process. Lett., 2014, 21, (2), pp. 225229.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2015.0218
Loading

Related content

content/journals/10.1049/iet-spr.2015.0218
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address