Joint estimation of state and system biases in non-linear system

Joint estimation of state and system biases in non-linear system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In multi-platform surveillance system, a prerequisite for successful fusion is the transformation of data from different platforms to a common coordinate system. However, some stochastic system biases arise during this transformation, and they seriously downgrade the global surveillance performance. Considering that the target state and the system biases are coupled and interactive, the authors present a new recursive joint estimation (RJE) algorithm for registering stochastic system biases and estimating target state. First, the relationship between system biases estimation and target state estimation is derived. Second, the RJE framework is introduced on the basis of the proposed relationship. Representing the different behavioural aspects of the motion of a maneuvering target is difficult to achieve with a single model in a multi-platform target tracking system. By accounting for the non-linear and/or non-Gaussian property of the dynamic system, they modify the interacting multiple model–particle filter framework to estimate parameters. This approach considers not only the influence of the system biases, but also the covariance of state on the basis of multiple-particle statistics. Simulation results reveal the superior performance of the proposed approach with respect to the traditional algorithm under the same conditions.


    1. 1)
      • 1. Hall, D.L., McMullen, S.A.H.: ‘Mathematical techniques in multisensor data fusion’ (Artech House, Inc., Norwood, MA, 2004, 2nd edn.).
    2. 2)
      • 2. Lin, X.D., Bar-Shalom, Y.: ‘Multisensor target tracking performance with bias compensation’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (3), pp. 11391149.
    3. 3)
      • 3. Zhou, Y.F.: ‘A Kalman filter based registration approach for multiple asynchronous sensors in multiple sensor fusion applications’. Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Montreal, Quebec, Canada, May 2004, pp. II-293296.
    4. 4)
      • 4. Burke, J.J.: ‘The SAGE real time quality control function and its interface with BUIC II/BUIC-III[R]’, MITRE Corporation Technical Report, No. 308, 1996.
    5. 5)
      • 5. Leung, H., Blanchette, M., Harrison, C.: ‘A least square fusion of multiple radar data’. Proc. Int. Conf. on Radar, Paris, France, May 1994, pp. 364369.
    6. 6)
      • 6. Dana, M.P.: ‘Registration: a prerequisite for multiple sensor tracking’, in Bar-Shalom, Y. (ED.): ‘Multitarget-multisensor tracking: advanced applications’ (Artech House, Norwood, MA, Chicago, 1990), pp. 155185.
    7. 7)
      • 7. Zhou, Y.F., Henry, L., Martin, B.: ‘Sensor alignment with earth-centered earth-fixed (ECEF) coordinate system’, IEEE Trans. Aerosp. Electron. Syst., 1993, 35, (2), pp. 410417.
    8. 8)
      • 8. Li, I.T., Georganas, J.: ‘Multi-target multi-platform sensor registration in geodetic coordinates’. Proc. Int. Conf. on Information Fusion, Annapolis, MD, USA, July 2002, pp. 366373.
    9. 9)
      • 9. Okello, N., Ristic, B.: ‘Maximum likelihood registration for multiple dissimilar sensors’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (3), pp. 10741083.
    10. 10)
      • 10. Dhar, S.: ‘Application of a recursive method for registration error correction in tracking with multiple sensors’. Proc. American Control Conf., San Francisco, CA, March 1993, pp. 875879.
    11. 11)
      • 11. Dela Cruz, E.J., Alouani, A.T., Rice, T.R., et al: ‘‘Sensor registration in multisensor systems’. Proc. of SPIE Conf. Signal and Data Processing of Small Targets, Orlando, FL, USA, August 1992, pp. 382393.
    12. 12)
      • 12. Friedland, B.: ‘Treatment of bias in recursive filtering’, IEEE Trans. Autom. Control, 1969, 14, (4), pp. 359367.
    13. 13)
      • 13. Zia, A., Kirubarajan, T., Reilly, P., et al: ‘An EM algorithm for nonlinear state estimation with model uncertainties’, IEEE Trans. Signal Process., 2008, 56, (3), pp. 921936.
    14. 14)
      • 14. Li, W., Leung, H., Zhou, Y.: ‘Space-time registration of radar and ESM using unscented Kalman filter’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (3), pp. 824836.
    15. 15)
      • 15. Zhou, Y.F., Leung, H., Chan, K.: ‘A two-step extended Kalman filter fusion approach for misaligned sensors’. Proc. Int. Conf. on Multisource Multisensor Information Fusion, Las Vegas, July 1998, pp. 5458.
    16. 16)
      • 16. Ignagni, M.B.: ‘An alternate derivation and extension of Friedland's two-stage Kalman estimator’, IEEE Trans. Autom. Control, 1981, 26, (3), pp. 746750.
    17. 17)
      • 17. Lin, X.D., Bar-Shalom, Y., Kirubarajan, T.: ‘Exact multisensor dynamic bias estimation with local tracks’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (2), pp. 576587.
    18. 18)
      • 18. Lin, X.D., Bar-Shalom, Y., Kirubarajan, T.: ‘Multisensor-multitarget bias estimation for general asynchronous sensors’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (3), pp. 899919.
    19. 19)
      • 19. Li, Z.H., Chen, S.Y., Leung, H.: ‘Joint data association, registration, and fusion using EM-KF’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (2), pp. 496507.
    20. 20)
      • 20. Zhou, Y.F., Leung, H.: ‘An exact maximum likelihood registration algorithm for data fusion’, IEEE Trans. Signal Process., 1997, 45, (6), pp. 15601572.
    21. 21)
      • 21. Bugallo, M.F., Lu, T., Djuric, P.M.: ‘Bearings-only tracking with biased measurements’. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, St. Thomas, U.S. Virgin Islands, USA, December 2007, pp. 265268.
    22. 22)
      • 22. Boers, Y., Driessen, J.N., Boers, Y., et al: ‘Interacting multiple model particle filter’, IEEE Proc., Radar Sonar Navig., 2003, 150, (5), pp. 344349.
    23. 23)
      • 23. Huang, D.L., Leung, H.: ‘An EM-IMM method for simultaneous registration and fusion of multiple radars and ESM sensors’, Adv. Wirel. Sens. Sens. Netw., 2010, 64, pp. 101124.
    24. 24)
      • 24. Mazor, E., Averbuch, A., Bar-Shalom, Y., et al: ‘Interacting multiple model methods in multitarget-multisensor tracking: survey’, IEEE Trans. Aerosp. Electron. Syst., 1998, 34, (1), pp. 103123.
    25. 25)
      • 25. Blair, W.D., Watson, G.A.: ‘Interacting multiple bias model algorithm with application to tracking maneuvering targets’. Proc. IEEE Conf. Decision Control, 1992, pp. 37903795.
    26. 26)
      • 26. Watson, G.A., Blair, W.D.: ‘Solution to second benchmark problem for tracking maneuvering targets in the presence of FA and ECM’. Proc. SPIE Conf. on Signal and Data Processing of Small Targets, San Diego, CA, September 1995, pp. 263274.
    27. 27)
      • 27. Karatzas, I., Shreve, S.E.: ‘Brownian motion and stochastic calculus’ (Springer-Verlag, New York, 1991, 2nd edn.).
    28. 28)
      • 28. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, New York, 2009).
    29. 29)
      • 29. Foo, P.H., Ng, G.W.: ‘Combining the interacting multiple model method with particle filters for manoeuvring target tracking’, IET Radar Sonar Navig., 2011, 5, (3), pp. 234255.

Related content

This is a required field
Please enter a valid email address