http://iet.metastore.ingenta.com
1887

Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity

Knowledge-aided STAP with sparse-recovery by exploiting spatio-temporal sparsity

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper, novel knowledge-aided space-time adaptive processing (KA-STAP) algorithms using sparse representation/recovery (SR) techniques by exploiting the spatio-temporal sparsity are proposed to suppress the clutter for airborne pulsed Doppler radar. The proposed algorithms are not simple combinations of KA and SR techniques. Unlike the existing sparsity-based STAP algorithms, they reduce the dimension of the sparse signal by using prior knowledge resulting in a lower computational complexity. Different from the KA parametric covariance estimation (KAPE) scheme, they estimate the covariance matrix using SR techniques that avoids complex selections of the Doppler shift and the covariance matrix taper. The details of the selection of potential clutter array manifold vectors according to prior knowledge are discussed and compared with the KAPE scheme. Moreover, the implementation issues and the computational complexity analysis for the proposed algorithms are also considered. Simulation results show that our proposed algorithms obtain a better performance and a lower complexity compared with the sparsity-based STAP algorithms and outperform the KAPE scheme in presence of errors in prior knowledge.

References

    1. 1)
      • 1. Ward, J.: ‘Space-time adaptive processing for airborne radar’. Technical Report 1015, MIT Lincoln Laboratory, Lexington, MAvol, December 1994.
    2. 2)
      • 2. Klemm, R.: ‘Principles of space-time adaptive processing’ (Institute of Electical Engineering, London, UK, 2006).
    3. 3)
      • 3. Guerci, J.R.: ‘Space-time adaptive processing for radar’ (Artech House, 2003).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 20. Fa, R., De Lamare, R.C., Nascimento, V.H.: ‘Knowledge-aided STAP algorithm using convex combination of inverse covariance matrices for heterogeneous clutter’. Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 2010, pp. 27422745.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 31. Maria, S., Fuchs, J.J.: ‘Application of the global matched filter to STAP data an efficient algorithmic approach’. Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 2006, pp. 1419.
    32. 32)
    33. 33)
      • 33. Selesnick, I.W., Pillai, S.U., Li, K.Y., et al: ‘Angle-Doppler processing using sparse regularization’. Proc. IEEE Int. Conf. Acoust. Speech and Signal Process., 2010, pp. 27502753.
    34. 34)
    35. 35)
      • 35. Sun, K., Zhang, H., Li, G., et al: ‘A novel STAP algorithm using sparse recovery technique’. Proc. IGARSS, 2009, pp. 336339.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 39. Parker, J.T., Potter, L.C.: ‘A Bayesian perspective on sparse regularization for STAP post-processing’. Proc. IEEE Radar Conf., May 2010, pp. 14711475.
    40. 40)
    41. 41)
    42. 42)
      • 42. Sharif-Nassab, A., Kharratzadeh, M., Babaie-Zadeh, M., et al: ‘How to use real-values sparse recovery algorithms for complex-valued sparse recovery?’. Proc. 20th European Signal Process. Conf., Bucharest, Romania, August 2012, pp. 849853.
    43. 43)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0255
Loading

Related content

content/journals/10.1049/iet-spr.2014.0255
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address