access icon free Sinusoidal frequency estimation by multiple signal classification in frequency domain beam-space

A novel method is presented to estimate sinusoidal frequency from highly contaminated single channel signals by constructing multi-channel surrogates using multiple signal classification (MUSIC) method in frequency domain beam-space (FB-MUSIC). According to the comparability of sampled data in time domain and observed data in uniform linear array, the FB-MUSIC method is proposed and the explicit expressions for the covariance elements of the estimation errors associated with FB-MUSIC are derived. These expressions are then used to analyse the statistical performance of FB-MUSIC and MUSIC. These expressions for the estimation error covariance are also used to compare the theoretical results and simulation results. Monte-Carlo simulations show that the root-mean-square error of frequency estimation in simulations keep consistent with the theoretical covariance for FB-MUSIC and MUSIC, and the signal-to-noise ratio resolution threshold of FB-MUSIC with reduced dimensionality is lower than that of MUSIC. This method may provide a higher resolution of sinusoidal frequency estimation and lower computation cost as compared with the conventional MUSIC method.

Inspec keywords: Monte Carlo methods; mean square error methods; signal classification; frequency estimation; covariance analysis; frequency-domain analysis

Other keywords: signal-to-noise ratio resolution threshold; covariance elements; sinusoidal frequency estimation; multichannel surrogates; frequency domain beam-space; theoretical covariance; computation cost; statistical performance; Monte-Carlo simulation; estimation error covariance; highly-contaminated single-channel signals; conventional MUSIC method; FB-MUSIC method; time domain; uniform linear array; root-mean-square error; multiple-signal classification method

Subjects: Signal processing theory; Interpolation and function approximation (numerical analysis); Signal processing and detection; Monte Carlo methods; Monte Carlo methods; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 33. Trees, H.L.V.: ‘Optimum array processing part IV of detection, estimation and modulation’ (Wiley, New York, 2002).
    2. 2)
      • 6. Stoica, P., So˝ derstro˝ m, T.: ‘Statistical analysis of MUSIC and ESPRIT estimates of sinusoidal frequencies’. Proc. IEEE ICASSP, Toronto, Canada, 1991, pp. 32733276.
    3. 3)
      • 16. Karhunen, J.T., Joutsensalo, J.: ‘Robust MUSIC based on direct signal subspace estimation’. Proc. IEEE ICASSP, Toronto, Canada, 1991, pp. 33573360.
    4. 4)
      • 24. Hua, Z.Z.: ‘The fourth order cumulants based modified MUSIC algorithm for DOA in colored noise’. 2010 Asia-Pacific Conf. on Wearable Computing Systems, 2010, pp. 345347.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 13. Xu, X.L., Buckley, K.M.: ‘Statistical performance comparison of MUSIC in element-space and beam-space’. Proc. IEEE ICASSP, Glasgow, UK, 1989, pp. 21242127.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 30. Bienvenu, G., Tufts, D.W.: ‘Decreasing high-resolution method sensitivity by conventional beamformer preprocessing’. Proc. ICASSP, 1984, pp. 33.2.14.
    24. 24)
      • 21. Viberg, M., Lundgren, A.: ‘Array interpolation based on local polynomial approximation with application to DOA estimation using weighted MUSIC’. Proc. IEEE ICASSP, Taiwan, China, 2009, pp. 21452148.
    25. 25)
    26. 26)
      • 25. Zhang, J.X., Christensen, M.G., Dahl, J., Jensen, S.H., Moonen, M.: ‘Robust implementation of the MUSIC algorithm’. Proc. IEEE ICASSP 2009, Taiwan, China, 2009, pp. 30373040.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 28. Zhang, H., Wu, H.-C., Chang, S.Y.: ‘Novel fast MUSIC algorithm for spectral estimation with high subspace dimension’. Proc. IEEE ICNC 2013, San Diego, USA, 2013, pp. 474478.
    31. 31)
      • 29. Christensen, M.G.: ‘An exact subspace method for fundamental frequency estimation’. Proc. IEEE ICASSP 2013, Vancouver, Canada, 2013, pp. 68026806.
    32. 32)
    33. 33)
      • 2. Schmidt, R.O.: ‘Multiple emitter location and signal parameter estimation’. Proc. RADC Spectral Estimation Workshop, Rome, NY, 1979, pp. 243258.
    34. 34)
      • 31. War, M., Kailath, T.: ‘Detection of signals by information theoretic criteria’, IEEE Trans. Acoust. Speech Signal Process., 1985, 33, (3), pp. 387392.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0246
Loading

Related content

content/journals/10.1049/iet-spr.2014.0246
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading