access icon free Multiplicative finite impulse response filters: implementations and applications using field programmable gate arrays

This paper describes how modern field programmable gate array (FPGA) technology can be used to build practical and efficient multiplicative finite impulse response (MFIR) filters with low-pass, high-pass, band-pass and band-stop characteristics. This paper explains how MFIR structures can be built with or without linear phase characteristics and implemented efficiently on modern FPGA architectures using fixed-point arithmetic without incurring stability problems or limit cycles which commonly occur when using equivalent infinite impulse response structures. These properties have a particular importance for applications such as tunable resonators, narrow band rejectors and linear phase filters which have demanding, narrow transition band requirements. The results presented in this paper indicate that MFIR filters are, for some applications, a viable alternative to existing filter structures when implemented on an FPGA.

Inspec keywords: high-pass filters; linear phase filters; low-pass filters; field programmable gate arrays; band-stop filters; band-pass filters; FIR filters; IIR filters

Other keywords: multiplicative finite impulse response filter; band-pass characteristics; linear phase characteristics; field programmable gate array; high-pass characteristics; MFIR filter; equivalent infinite impulse response structures; fixed-point arithmetic; modern FPGA architecture; low-pass characteristics; band-stop characteristics

Subjects: Logic and switching circuits; Filtering methods in signal processing; Logic circuits; Digital signal processing

References

    1. 1)
      • 38. Parker, M.: ‘Digital signal processing’ (Newnes, Burlington, MA, 2010), Ch. 11, p. 11.
    2. 2)
      • 35. Xilinx, Spartan-3 generation FPGA user guide, extended Spartan-3A, Spartan-3E and Spartan-3 FPGA families, UG331 (v1.8) 13 June 2011.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 30. Rademacher, H.: ‘Topics in analytic number theory’ (Springer Verlag, New York, 1973), Ch. 12, pp. 213214.
    8. 8)
      • 13. De Witte, N.: ‘Implementation of linear phase IIR filters in FPGA technology’. MSc thesis, Department of IW&T, University College Bruges-Ostend, Bruges, Belgium, 2012.
    9. 9)
      • 16. Xilinx FPGA product portfolio. Available at http://www.xilinx.com/products/silicon-devices/fpga/, consulted on 12 February 2014.
    10. 10)
      • 2. Parhi, K.K.: ‘Pipelined VLSI recursive filter architectures using scattered look-ahead and decomposition’. Proc. Int. Conf. of Acoustics, Speech, and Signal Processing, ICASSP-88, April 1988, pp. 21202123.
    11. 11)
    12. 12)
      • 32. Vandenbussche, J.-J., Lee, P., Peuteman, J.: ‘Linear phase approximation of real and complex pole IIR filters using MFIR structures’. Proc. Fifth European Conf. on the Use of Modern Information and Communication Technologies, Gent, Belgium, 22–23 March 2012, pp. 221231.
    13. 13)
      • 31. Jackson, L.B.: ‘Digital filters and signal processing’ (Kluwer Academic Publishers, Boston, 1996), Ch. 11, pp. 373422.
    14. 14)
      • 11. Chen, Y.L., Chen, C.Y., Jeng, K.-Y., Wu, A.-Y.: ‘A universal look-ahead algorithm for pipelining IIR filters’. Proc. IEEE Int. Symp. on VLSI Design, Automation and Test, VLSI-DAT, 2008, pp. 259262.
    15. 15)
      • 40. Blieck, S.: ‘Royal philips electronics high-end TV lab’, Bruges, Belgium, private communication, February 2013.
    16. 16)
      • 5. Chang, K.C., Kim, J.: ‘Pipelined recursive digital filters: clustered look-ahead and scattered look-ahead techniques’. Proc. Int. Symp. on Circuits and Systems, ISCAS 94, 1994, pp. 8992.
    17. 17)
      • 37. Rocha, A.F., Ferreira, A.J.S.: ‘An accurate method of detection and cancellation of multiple acoustic feedbacks’. in preprints AES 118th Convention, Barcelona, Spain, 2005, AES preprint 6335.
    18. 18)
    19. 19)
    20. 20)
      • 29. Vandenbussche, J.-J.: ‘MFIR structures approximating conjugate pole pairs using complex multipliers’, unpublished.
    21. 21)
      • 34. Vandenbussche, J.-J., Lee, P., Peuteman, J.: ‘An FPGA based digital lock-in amplifier implemented using MFIR resonators’. Proc. Ninth Int. Conf. on Signal Processing, Pattern Recognition and Applications, Crete, Greece, 18–20 June 2012, pp. 9299.
    22. 22)
      • 1. Vandenbussche, J.-J., Lee, P., Peuteman, J.: ‘Analysis of time and frequency domain performance of MFIR filters’. Proc. Int. Conf. on Embedded Systems and Applications, Las Vegas, July 2008, pp. 323329.
    23. 23)
      • 8. Shaw, A.K., Imtiaz, M.: ‘A general look-ahead algorithm for pipelining IIR filters’. Proc. Int. Symp. on Circuits and Systems, ISCAS'96, 1996, vol. 2, pp. 237240.
    24. 24)
      • 24. Young, C., Jones, D.L.: ‘Improvement in finite word length FIR digital filter design by cascading’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 1992, vol. 5, pp. 109112.
    25. 25)
    26. 26)
      • 19. Saramäki, T., Johansson, H.: ‘Optimization of FIR filters using the frequency-response masking approach’. The 2001 IEEE Int. Symp. on Circuits and Systems, ISCAS 2001, May 2001, vol. 2, pp. 177180.
    27. 27)
    28. 28)
      • 12. Paul, S.R., Chau, P.M.: ‘A technique for realizing linear phase IIR filters’. IEEE Int. Symp. on Circuits and Systems, November 1991, vol. 39, (11), pp. 24252435.
    29. 29)
      • 14. Francis, M.: ‘Infinite impulse response structures in Xilinx FPGAs’, wp330 10 August 2009.
    30. 30)
      • 39. Vandenbussche, J.-J., Lee, P., Peuteman, J.: ‘Design of an FPGA based TV-tuner test bench using MFIR structures’, Annu. J. Electron., 2013, 7, pp. 2125, ISSN 1314-0078.
    31. 31)
    32. 32)
      • 33. Smith, J.O.: ‘Introduction to digital filters with audio applications’ (W3K Publishing, 2006). Available at http://www.books.w3k.org/.
    33. 33)
    34. 34)
    35. 35)
      • 17. Saramäki, T., Lian, Y.: ‘Guest editorial of special issue on frequency response masking technique and its applications’, Circuits Syst. Signal Process., 2003, 22, (2), pp. ivii.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 41. Si2185 Hybrid DVB-T/C and Analog TV Receiver, datasheet, Silicon Laboratories Inc., Austin, TX, 2011.
    40. 40)
      • 15. Smith, J.O.: ‘Physical audio signal processing’ (W3K publishing, 2010), pp. 5764.
    41. 41)
      • 10. Samanta, S., Chakraborty, M.: ‘FPGA based implementation of high speed tunable notch filter using pipelining and unfolding’. 20th National Conf. on Communications, NCC, 2014, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0143
Loading

Related content

content/journals/10.1049/iet-spr.2014.0143
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading