access icon free Bayesian compressive sensing using tree-structured complex wavelet transform

The tree-structured complex wavelet Bayesian compressing sensing (TSCW-BCS) is introduced. The Bessel K form (BKF) probability density function; which has heavy tails out of the origin, is used as the prior. The inter-scale statistical relation between complex wavelet coefficients is modelled by the hidden Markov tree. The Markov chain Monte Carlo inference is obtained based on the BKF and then the posterior parameters of wavelet coefficients are derived. Simulation results show that the proposed TSCW-BCS outperforms many well-known CS methods.

Inspec keywords: compressed sensing; Markov processes; wavelet transforms; trees (mathematics); Monte Carlo methods; Bayes methods; inference mechanisms

Other keywords: complex wavelet coefficients; Bessel K form probability density function; TSCW-BCS; tree-structured complex wavelet Bayesian compressing sensing; hidden Markov tree; tree-structured complex wavelet transform; posterior parameters; Markov chain Monte Carlo inference; BKF probability density function

Subjects: Combinatorial mathematics; Integral transforms; Monte Carlo methods; Markov processes; Combinatorial mathematics; Image and video coding; Computer vision and image processing techniques; Integral transforms; Monte Carlo methods; Markov processes; Knowledge engineering techniques

References

    1. 1)
    2. 2)
      • 21. Mallat, S.: ‘A wavelet tour of signal processing’ (Academic, New York, 1998, 2nd edn.).
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 28. Robert, C.P., Cassella, G.: ‘Monte carlo statistical methods’ (Springer, New York, 2004, 2nd edn.).
    7. 7)
      • 6. Duarte, M.F., Wakin, M.B., Baraniuk, R.G.: ‘Wavelet-domain compressive signal reconstruction using a hidden Markov tree model’. Proc. Int. Conf. on Acoustic, Speech Signal Process. (ICASSP), 2008, pp. 51375140.
    8. 8)
      • 17. La, C., Do, M.: ‘Signal reconstruction using sparse tree representations’. Proc. SPIE Wavelets XI, 2005.
    9. 9)
    10. 10)
      • 15. Hormati, A., Vetterli, M.: ‘Annihilating filter-based decoding in the compressed sensing framework’. Proc. SPIE Wavelets XII, 2007.
    11. 11)
    12. 12)
      • 32. Berg, E.V.D., Friedlander, M.P.: ‘Sparse optimization with least-squares constraints’, SIAM J. Sci. Comput., 2011, 21, (4), pp. 12011229.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 29. Available at http://research.microsoft.com/en-us/projects/objectclassrecog-nition/.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 36. Bishop, C., Tipping, M.: ‘Variational relevance vector machines’. Proc. 16th Annual Conf. Uncertainty in Artificial Intelligence (UAI), San Francisco, CA, 2000, pp. 4653.
    25. 25)
      • 34. Beal, M.J.: ‘Variational Algorithms for approximate bayesian inference’. Ph.D., Gatsby Computational Neuroscience Unit, University College London, London, U.K., 2003.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 8. Donoho, D.L., Tsaig, Y., Drori, I., Starck, L.: ‘Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit’. Stanford Statistics Technical Report, 2006–2, April2006.
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0129
Loading

Related content

content/journals/10.1049/iet-spr.2014.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading