http://iet.metastore.ingenta.com
1887

Enhanced distributed estimation based on prior information

Enhanced distributed estimation based on prior information

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper, a distributed estimation algorithm using Bayesian-based forward backward Kalman filter (KF) is proposed for stochastic singular linear systems. The method incorporates generalised versions of KF for bounded cases with complete and incomplete prior information, followed by estimation fusion of these cases. The incorporated filters remain optimal given the cross-covariance of the local estimates. The proposed approach is validated on a coupled-tank system.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 13. Mahmoud, M.S., Khalid, H.M.: ‘Expectation maximization approach to data-based fault diagnostics’. Elsevier – Information Sciences, Special section on ‘Data-based Control, Decision, Scheduling and Fault Diagnostics’, June 2013, vol. 235, pp. 8096.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 17. Chong, C.Y., Mori, S.: ‘Convex combination and covariance intersection algorithm in distributed fusion’. Proc. of the Fourth Int. Information Fusion Conf., ISIF, Montreal, Canada, 2001.
    18. 18)
      • 18. Sun, S.L.: ‘Multi-sensor optimal information fusion Kalman filter for discrete multichannel ARMA Signals’. Proc. of 2003 IEEE Int. Symp. on Intelligent Control, 2003, pp. 377382.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 22. Shalom, Y., Campo, L.: ‘The effect of the common process noise on the two-sensor fused-track covariance’, IEEE Trans. AES, 1986, AES-22, (6), pp. 803805.
    23. 23)
      • 23. Khalid, H.M.: ‘Distributed Kalman filtering’, PhD dissertation, King Fahd University of Petroleum and Minerals, September2012.
    24. 24)
      • 24. Oh, S., Sastry, S.: ‘Approximate estimation of distributed networked control system’. 2007 ACC ‘07 American Control Conf., 9–13 July 2007, pp. 9971002.
    25. 25)
      • 25. Chen, Z.: ‘Bayesian filtering: from Kalman filters to particle filters and beyond’. Adaptive Syst Lab McMaster University Hamilton ON Canada, Citeseer, 2003, pp. 913, 25–46.
    26. 26)
    27. 27)
      • 27. Saber, R.O.: ‘Distributed Kalman filters with embedded consensus filters’. Proc. 44th IEEE Conf. Decision Control, Seville, Spain, December 2005, pp. 81798184.
    28. 28)
      • 28. Xu, Y., Gupta, V., Fischione, C.: ‘Distributed estimation’. Technical report, 2012, pp. 134.
    29. 29)
      • 29. Doraiswami, R., Cheded, L., Khalid, H.M.: ‘Model order selection criterion with application to physical systems’. Sixth IEEE Conf. on Automation, Science and Engineering (CASE), Toronto, Canada, 21–24 August 2010, pp. 393398.
    30. 30)
      • 30. Mosca, E.: ‘Optimal, predictive, adaptive control’ (Prentice-Hall, New Jersey, 1995).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0029
Loading

Related content

content/journals/10.1049/iet-spr.2014.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address