access icon free Multi-correlation strategies fusion acquisition method for high data rate global navigation satellite system signals

With the increasing use of high data rate navigation signals, the detection performance is severely affected by sign transition. An acquisition method based on multiple correlation strategies fusion (MCSF) has been proposed to reduce the correlation loss caused by the sign transition. The detection performances of non-coherent (NCH) method, zero-padding (ZP) method and MCSF in the presence of sign transition have been analysed. The theoretical and simulation results show that the proposed method can provide 1–3 dB acquisition sensitivity improvement compared with the NCH and ZP methods, and reduce the mean acquisition time by 21.3 and 8.5%, respectively. Moreover, the real data from GPS L5 and BeiDou Navigation Satellite System B2I have been used to analyse the performance.

Inspec keywords: correlation methods; signal detection; Global Positioning System

Other keywords: MCSF; GPS L5; correlation loss reduction; NCH method; BeiDou navigation satellite system B2I; high data rate global navigation satellite system signal; Global Positioning System; noncoherent method; sign transition; zero-padding method; ZP method; multicorrelation strategies fusion acquisition method

Subjects: Signal detection; Radionavigation and direction finding

References

    1. 1)
      • 43. Holmes, J.K.: ‘Coherent spread spectrum systems’ (Wiley & Sons, Inc., 1982).
    2. 2)
      • 15. Turunen, S.: ‘Network assistance. What will new GNSS signals bring to it’, Inside GNSS, 2007, 2, (3), pp. 3541.
    3. 3)
      • 9. Ayaz, A.S.: ‘Analysis of differential acquisition methods by using Monte-Carlo simulations’. Proc. 18th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), Long Beach, CA, September 2005, pp. 19221930.
    4. 4)
      • 28. Leclere, J., Botteron, C., Farine, P.A.: ‘Modified parallel code-phase search for acquisition in presence of sign transition’. Proc. of 2013 Int. Conf. on Localization and GNSS (ICL-GNSS), Turin, June 2013, pp. 16.
    5. 5)
      • 21. Lin, D.M., Tsui, J.B.: ‘Comparison of acquisition methods for software GPS receiver’. Proc. 13th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 2000, pp. 23852390.
    6. 6)
    7. 7)
      • 35. Olver, F.W.J.: ‘Bessel functions of integer order’, in Milton Abramowitz, M., Stegun, I.A. (Eds.): ‘Handbook of mathematical functions, with formulas, graphs and mathematical tables’ (Dover, 1965), pp. 355388.
    8. 8)
      • 36. Macchi, F., Petovello, M.G.: ‘Development of a one channel Galileo L1 software receiver and testing using real data’. Proc. 20th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), Fort Worth, TX, September 2007, pp. 22562269.
    9. 9)
    10. 10)
      • 14. Syrjarinne, J.: ‘Possibilities for GPS time recovery with GSM network assistance’. Proc. 13th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT, September 2000, pp. 955966.
    11. 11)
    12. 12)
      • 45. Pajala, E., Lohan, E.S., Renfors, M.: ‘On the choice of the parameters for fast hybrid-search acquisition architectures of GPS and Galileo signals’. Proc. of Nordic Radio Symp., including Finnish Wireless Communications Workshop (NRS/FWCW 2004), Oulu, Finland, August 2004.
    13. 13)
    14. 14)
    15. 15)
      • 33. Proakis, J.G.: ‘Digital communications’ (McGraw-Hill, New York, 2001, 4th edn.).
    16. 16)
      • 17. Feng, G., van Graas, F.: ‘GPS receiver block processing’. Proc. z12th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999), Nashville, TN, September 1999, pp. 307316.
    17. 17)
    18. 18)
      • 39. Simone, L., Fittipaldi, G., Sanchez, I.A.: ‘Fast acquisition techniques for very long PN codes for on-board secure TTC transponders’. Proc. of Military Communications Conf. (MILCOM), Rome, Italy, November 2011, pp. 17481753.
    19. 19)
      • 47. Beidou navigation satellite system signal in space interface control document open service signal (Version 2.0)’, http://interact.beidou.gov.cn/interact/download.service?attachment=2013/12/26/20131226b8a6182fa73a4ab3a5f107f762283712.pdf, accessed December 2013.
    20. 20)
      • 44. Bastide, F., Julien, O., Macabiau, C., et al: ‘Analysis of L5/E5 acquisition, tracking and data demodulation thresholds’. Proc. 15th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, September 2002, pp. 21962207.
    21. 21)
      • 25. Zhang, W., Ghogho, M.: ‘Improved fast modified double-block zero-padding (FMDBZP) algorithm for weak GPS signal acquisition’. Proc. 18th European Signal Processing Conf. (EUSIPCO-2010), Aalborg, Denmark, August 2010, pp. 16171621.
    22. 22)
      • 3. Anghileri, M., Paonni, M., Fontanella, D., et al: ‘Assessing GNSS data message performance’, Inside GNSS, 2013, (March/April), pp. 6071.
    23. 23)
      • 4. Sun, K., Presti, L.L.: ‘Channels combining techniques for a novel two steps acquisition of new composite GNSS signals in presence of bit sign transitions’. Proc. of Position Location and Navigation Symp. (IEEE/ION PLANS 2010), California, USA, May 2010, pp. 443457.
    24. 24)
      • 38. Ju, W., Xie, X.C.: ‘An improved CL code acquisition method of L2C signal’. Proc. of 2010 Tenth IEEE Int. Conf. on Signal Processing (ICSP), Beijing, October 2010, pp. 24932496.
    25. 25)
      • 41. IS-GPS-705 revision A: Navstar GPS space segment/user segment L5 interfaces’. Available at http://www.gps.gov/technical/icwg/IS-GPS-705A.pdf, accessed April 2009.
    26. 26)
      • 23. Ziedan, N.I., Garrison, J.L.: ‘Unaided acquisition of weak GPS signals using circular correlation or double-block zero padding’. Proc. of IEEE Position Location and Navigation Symp. (PLANS 2004), Monterey, CA, April 2004, pp. 461467.
    27. 27)
      • 6. Zou, D., Deng, Z., Huang, J., et al: ‘A study of Neuman Hoffman codes for GNSS application’. Proc. Fifth Int. Conf. on Wireless Communications, Networking and Mobile Computing, Beijing, China, September 2009, pp. 14.
    28. 28)
      • 10. Elders-Boll, H., Dettmar, U.: ‘Efficient differentially coherent code/Doppler acquisition of weak GPS signals’. Proc. of IEEE Eighth Int. Symp. on Spread Spectrum Techniques and Applications, 30 August–2 September 2004, pp. 731735.
    29. 29)
      • 27. Yang, C., Hegarty, C., Tran, M.: ‘Acquisition of the GPS L5 signal using coherent combining of I5 and Q5’. Proc. 17th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach, CA, September 2004, pp. 21842195.
    30. 30)
      • 18. Psiaki, M.L.: ‘Block acquisition of weak GPS signals in a software receiver’. Proc. 12th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, September 2001, pp. 832838.
    31. 31)
      • 19. Yang, C., Nguyen, T., Blasch, E., et al: ‘Post-correlation semi-coherent integration for high-dynamic and weak GPS signal acquisition’. Proc. of Position, Location and Navigation Symp. (2008 IEEE/ION PLANS), Monterey, CA, May 2008, pp. 13411349.
    32. 32)
      • 34. Andrews, L.C., Phillips, R.L.: ‘Functions defined by integrals’, inMathematical techniques for engineers and scientists’ (SPIE Press, 2003), pp. 6770.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 7. Viterbi, A.J.: ‘CDMA: principles of spread spectrum communication’ (Addison-Wesley, Reading, 1995).
    38. 38)
    39. 39)
      • 30. Huang, J., Yao, Z., Lu, M.: ‘Performance analysis of an improved GPS acquisition strategy’, J. Astron., 2011, 32, (1), pp. 157161.
    40. 40)
      • 2. Tarable, A., Perotti, A.G.: ‘A fresh look into designing channel error protection codes for satellite navigation messages’. Proc. GNSS Signals Workshop on GNSS Signals and Signal Processing, Toulouse, France, December 2011.
    41. 41)
      • 31. Steven, M.K.: ‘Statistical decision theory I’, in Oppenheim, A.V. (Ed.): ‘Fundamentals of statistical signal processing, Volume 2: detection theory’ (PTR Prentice-Hall, 1993), pp. 6074.
    42. 42)
      • 22. Lin, D.M., Tsui, J.B.Y., Howell, D.: ‘Direct P (Y)-code acquisition algorithm for software GPS receivers’. Proc. 12th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999), Nashville, TN, September 1999, pp. 363368.
    43. 43)
    44. 44)
      • 46. Kassabian, N., Lo Presti, L.: ‘Mean acquisition time of GNSS peer-to-peer networks’. Proc. of Int. Conf. on Localization and GNSS (ICL-GNSS), Starnberg, June 2012, pp. 16.
    45. 45)
      • 32. MacDonough, R.N., Whalen, A.D.: ‘Hypothesis testing’ in Booker, H.G., De Claris, N. (Eds.): ‘Detection of signals in noise’ (Academic Press, 1995, 2nd edn.), pp. 151159.
    46. 46)
    47. 47)
      • 1. Mongrédien, C., Lachapelle, G., Cannon, M.E.: ‘Testing GPS L5 acquisition and tracking algorithms using a hardware simulator’. Proc. 19th Int. Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), Fort Worth, TX, September 2006, pp. 29012913.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2014.0021
Loading

Related content

content/journals/10.1049/iet-spr.2014.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading