access icon free Asynchronous processing of sparse signals

Unlike synchronous processing, asynchronous processing is more efficient in biomedical and sensing networks applications as it is free from aliasing constraints and quantization error in the amplitude, it allows continuous–time processing and more importantly data is only acquired in significant parts of the signal. We consider signal decomposers based on the asynchronous sigma delta modulator (ASDM), a non-linear feedback system that maps the signal amplitude into the zero-crossings of a binary output signal. The input, the zero-crossings and the ASDM parameters are related by an integral equation making the signal reconstruction difficult to implement. Modifying the model for the ASDM, we obtain a recursive equation that permits to obtain the non-uniform samples from the zero-time crossing values. Latticing the joint time-frequency space into defined frequency bands, and time windows depending on the scale parameter different decompositions are possible. We present two cascade low- and high-frequency decomposers, and a bank-of-filters parallel decomposer. This last decomposer using the modified ASDM behaves like a asynchronous analog to digital converter, and using an interpolator based on Prolate Spheroidal Wave functions allows reconstruction of the original signal. The asynchronous approaches proposed here are well suited for processing signals sparse in time, and for low-power applications.

Inspec keywords: integral equations; compressed sensing

Other keywords: asynchronous analogue-to-digital converter; signal reconstruction; ASDM; integral equation; asynchronous sigma delta modulator; asynchronous processing; Prolate spheroidal wave functions; sparse signals; nonlinear feedback system; signal decomposers; biomedical networks applications; sensing networks applications; signal amplitude; continuous-time processing; zero crossings; quantisation error

Subjects: Signal processing theory; Mathematical analysis; Signal processing and detection; Mathematical analysis

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 18. Hansen, P.C.: ‘Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion texte imprimé. SIAM monographs on mathematical modeling and computation’ (SIAM, Philadelphia, 1998).
    5. 5)
      • 12. Kaldy, C., Lazar, A., Simonyi, E., Toth, L.: ‘Time encoded communications for human area network biomonitoring’. Technical Report 2-07, Department of Electrical Engineering, Columbia University, New York, NY, June 2007.
    6. 6)
    7. 7)
    8. 8)
      • 17. Can, A., Sejdic, E., Chaparro, L.F.: ‘Asynchronous sampling and reconstruction of sparse signals’. Proc. 20th European Signal Processing Conference (EUSIPCO), August 2012, pp. 854858.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 14. Can, A., Sejdic, E., Alkishriwo, O., Chaparro, L.F.: ‘Compressive asynchronous decomposition of heart sounds’. IEEE Statistical Signal Processing Workshop (SSP), August 2012, pp. 736739.
    14. 14)
    15. 15)
      • 5. Tsividis, Y.: ‘Digital signal processing in continuous time: a possibility for avoiding aliasing and reducing quantization error’. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP ‘04), 2004, vol. 2, pp. ii-589592.
    16. 16)
    17. 17)
    18. 18)
      • 13. Lazar, A., Simonyi, E., Toth, L.: ‘Time encoding of bandlimited signals, an overview’. Proc. Conf. Telecommunication Systems, Modeling and Analysis, November 2005.
    19. 19)
      • 6. Guan, K., Singer, A.C.: ‘A level-crossing sampling scheme for non-bandlimited signals’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), May 2006, vol. 3, p. III.
    20. 20)
      • 15. Lazar, A.A., Simonyi, E.K., Toth, L.T.: ‘An overcomplete stitching algorithm for time decoding machines’, IEEE Trans. Circuits Syst. I: Reg. Pap., 2008, 55, (9), pp. 26192630.
    21. 21)
      • 11. Aksenov, E.V., Ljashenko, Y.M., Plotnikov, A.V., Prilutskiy, D.A., Selishchev, S.V., Vetvetskiy, E.V.: ‘Biomedical data acquisition systems based on sigma-delta analogue-to-digital converters’. Engineering in Medicine and Biology Society, 2001. Proc. 23rd Annual Int. Conf. IEEE, 2001, vol. 4, pp. 33363337.
    22. 22)
      • 7. Senay, S., Chaparro, L.F., Sun, M., Sclabassi, R.: ‘Adaptive level-crossing sampling and reconstruction’. Proc. 18th European Signal Processing Conference (EUSIPCO), August 2010.
    23. 23)
    24. 24)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-spr.2013.0398
Loading

Related content

content/journals/10.1049/iet-spr.2013.0398
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading